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Abstract—Varying-parameter recurrent neural network, being
a special kind of neural-dynamic methodology, has revealed pow-
erful abilities to handle various time-varying problems, such as
quadratic minimization (QM) and quadratic programming (QP)
problems. In this paper, a novel power-type varying-parameter
recurrent neural network (PT-VP-RNN) is proposed to solve the
perturbed time-varying QM and QP problems. First, based on
the generalization of time-varying QM and QP problems, the
design process of the PT-VP-RNN is presented in detail. Second,
the robustness performance of the proposed PT-VP-RNN is the-
oretically analyzed and proved. What is more, two numerical
examples are simulated to illustrate the robustness convergence
performance of PT-VP-RNN even in a large disturbance con-
dition. Finally, two practical application examples (i.e., a robot
tracking example and a venture investment example) further ver-
ify the effectiveness, accuracy, and widespread applicability of the
proposed PT-VP-RNN.
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I. INTRODUCTION

QUADRATIC minimization (QM) [1] and quadratic pro-
gramming (QP) [2]–[4] play an important role in robot

motion planning [4], operation science [5], economic dispatch
and finance [6], management science [7], and combinatorial
optimization [8]. The traditional approaches to handle QM and
QP problems are the numerical-based methods [9]–[11]. In
recent years, with more and more real-time tasks arising, the
traditional numerical-based methods cannot meet the require-
ment of solving the large-scale time-varying QM and QP
problems. With the re-emergence of neural network recently,
the recurrent neural network is preferred to deal with the QM
and QP problems.

Recurrent neural networks have been applied in more
and more fields because of the variety of remarkable prop-
erties, such as adaptive self-learning capability [12]–[15],
distributed storage [16]–[19], and parallelism computa-
tion [20]–[23]. One of the most important applications
is time-varying problems solving, such as QM and QP
problems [4], [13], [20], [24], [25], and the corresponding of
practical applications [4], [13], [25], [26]. Xia and Wang [27]
proposed a primal dual neural network (PDNN) [28] that
with global-exponential convergence ability for solving QP
problems with unique solutions. With the PDNN, there is no
need to choose the lateral-connection and self-feedback for the
network [29]. This model has already been applied to obstacle
avoidance of robot arms [30].

However, the design process of PDNN is complex, and
a specific projection function must be obtained beforehand,
which is difficult. In order to solve the aforementioned QM
and QP problems in a straightway, a gradient-based neural
network (GNN) was proposed [31], [32]. GNN obtains the
solution by designing a scale-valued error function and making
it converge to zero. In order to reach the minimum point, a neg-
ative gradient is chosen to be the descent direction. Besides, a
constant parameter is designed to evaluate the convergence
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speed. Nevertheless, GNN has a fatal weakness that when
facing time-varying problems, it cannot track the theoretical
solution in time [33].

To remedy this disadvantage, a zeroing neural network
(ZNN) was proposed by Zhang et al. [18], Jin et al. [19],
Xiao [34], and Li et al. [35]. Since the derivatives of the
error function is taken into consideration, ZNN contains a
predictive ability, which can be applied to tracking theoretical
solutions. Howbeit, when facing external disturbance and com-
putation errors, the traditional ZNN cannot efficiently handle
the solution tracking task. Theoretical analysis demonstrates
that when facing perturbation, the residual errors of ZNN can
only achieve to reach an upper bound but cannot converge to
zero. That is to say, the residual errors of ZNN in the case of
external disturbance would oscillate all the time. Even though
Jin et al. and Xiao proposed some modified ZNN models
to improve the robustness performance [4], [19], [26], [34],
the computational efficiency still should be further improved.
One of the most popular modified ZNN models, which con-
tains finite-time stability, is named finite-time recurrent neural
network (FT-RNN) [36]. Xiao [37] utilized FT-RNN to solve
time-varying Sylvester function and proved that this model
can converge to the theoretical solutions within finite time.
Gu and Cui [38] introduced a efficient algorithm for solving
subset sum problems based on FT-RNN. Liu and Wang [39]
used FT-RNN to handle optimization problems with piece-
wise objective functions and designed the block diagram of
FT-RNN. Moreover, a tunable activation function named sign-
bi-power activation function was led to activated FT-RNN by
Shen et al. [40]. The different characteristics and simulative
performances of these neural networks inspired us to optimize
models form the aspect of designing novel parameters.

Since the convergence coefficients of the above models are
fixed and set as a constant, they are called fixed-parameter
recurrent neural network (termed as FP-RNN). Different from
the traditional FP-RNN models, a novel varying-parameter
recurrent neural network is proposed in this paper. Since its
convergence coefficient is power-type and is changing with
time t, it is named power-type varying-parameter recurrent
neural network (PT-VP-RNN). In fact, PT-VP-RNN inherits
all the advantages of FP-RNN because it is edified by the
previous models. Compared with traditional FP-RNN, PT-
VP-RNN can achieve faster convergence rate and stronger
robustness performance. Both theoretical analysis and simu-
lative results in this paper would illustrate the superiority of
PT-VP-RNN. Specifically, the convergent rate of PT-VP-RNN
is super-exponential, but that of the state-of-the-art methods
are exponential. Meanwhile, the residual errors of PT-VP-RNN
can always converge to zero even under large perturbation,
while FP-RNN can only guarantee to approximate to an upper
bond, but cannot converge to zero. It is worth mentioning that
many practical problems based on time-varying QM and QP
frameworks contain the potential applications of this method
because the design idea of PT-VP-RNN is easy to understand
and the theoretical proofs are rigorous.

The remainder of this paper is organized as follows.
Section II gives the problem formulation of time-varying QM
and QP problems. The design process of the PT-VP-RNN is

shown in Section III. In Section IV, we analyze the robustness
performance of PT-VP-RNN in detail. Simulative examples
and comparisons of PT-VP-RNN and traditional FP-RNN
are shown in Section V. Section VI illustrates two practical
applications. The conclusion and future research are given in
Section VII.

It is worth pointing out that the main contributions of this
paper are listed in the following facts.

1) A PT-VP-RNN is proposed to solve the time-varying
QM and QP problems in real-time. To the best of
the authors’ knowledge, it is the first time to pro-
pose such kind of recurrent neural network for solving
time-varying QM and QP problems in a disturbance
condition.

2) Theoretical analysis proves that the residual error of
PT-VP-RNN can converge to zero in a disturbance con-
dition. It is much better than the state-of-the-art methods
which can only guarantee to have an upper bond, but
cannot converge to zero.

3) Simulative examples verify the strong robustness
performance of the PT-VP-RNN when solving per-
turbed time-varying QM and QP problems. Even facing
large error situation and different dimensions cases,
the proposed PT-VP-RNN still possesses excellent
performance.

4) A robot tracking example and a venture investment
example further verify the effectiveness, accuracy, and
practicability of the proposed PT-VP-RNN.

II. PROBLEM FORMULATIONS

In this section, the preliminaries and problem formulations
of time-varying QM and QP problems are presented.

A. Time-Varying QM

The standard form of time-varying QM is described as

minimize M(t) = 1

2
xT(t)H(t)x(t) + PT(t)x(t) (1)

where H(t) ∈ R
n×n denotes a time-varying Hessian matrix and

it should be smooth and positive-definite for any time instant
t ∈ [0,+∞); superscript T denotes the transpose operation
of a vector or a matrix; PT(t) ∈ R

n denotes the coefficient
vector; and x(t) ∈ R

n denotes an unknown vector which is
solved to obtain the minimum value.

The partial derivative of M(t) is designed to obtain the
minimum value, i.e.,

∇M(x) = ∂M(x)

∂x(t)
= H(t)x(t) + PT(t). (2)

The optimization value of QM (1) can be obtained by
zeroing ∇M(t) at any time instant t ∈ [0,+∞), i.e.,

H(t)x(t) + PT(t) = 0 (3)

and the theoretical solution x∗(t) to (1) satisfies x∗(t) =
−H−1(t)P(t). Hence, the theoretical minimum value is
obtained, i.e., M∗ = M(x∗(t)) = x∗T(t)H(t)x∗(t)/2 +
PTx∗(t).
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Fig. 1. Three-dimensional plots of quadratic objective function and corresponding linear constraint of a time-varying convex QP problem. (a) t = 2.8000.
(b) t = 5.5000. (c) t = 7.8000. (d) t = 9.9500. We can see quite evidently that the shape and minimum value together with its minimum solution are all
“moving” as time instant t goes, so that the time-varying QP problem could be considered as a “moving minimum” problem. The darker the blue, the closer
to the minimum.

B. Time-Varying QP

In practical applications, time-varying QM (1) is not enough
to describe the target problem in many fields, for exam-
ple, robot motion planning problem. Considering a redundant
robot manipulator motion tracking task, based on robot motion
planning scheme, an equality constraint of time-varying QP
is necessary. Hence, the standard form of time-varying QP is
described as follows:

minimize
1

2
xT(t)Q(t)x(t) + PT(t)x(t)

subject to A(t)x(t) = B(t) (4)

where vector x(t) ∈ R
n at time instant t ∈ [0,+∞) is unknown

and to be solved in real-time; Q(t) ∈ R
n×n denotes the

positive-definite Hessian matrix; P(t) ∈ R
n denotes the coef-

ficient vector; A(t) ∈ R
m×n denotes the full rank coefficient

matrix; and B(t) ∈ R
n denotes a coefficient vector. Besides,

coefficient matrices Q(t), A(t) and vectors P(t), B(t), together
with their time derivatives Q̇(t), Ȧ(t), Ṗ(t), Ḃ(t), are assumed
to be known and smoothly time-varying, or could be estimated
accurately.

To guarantee the uniqueness of the solution, such time-
varying QP problem (4) should be strictly convex with
positive-definite Q(t) ∈ R

n×n at any time instant t ∈ [0,+∞).
In order to solve the time-varying QP problem (4), a

Lagrange form of this problem is constructed as below, i.e.,

L(x(t), λ(t), t) = 1

2
xT(t)Q(t)x(t) + PT(t)x(t)

+ λT(t)(A(t)x(t) − B(t)), t ∈ [0,+∞)

(5)

where λ(t) ∈ R
m denotes the vector of the Lagrangian

multiplier.
According to Lagrange multiplier method [41], for

QP problem (4), if both ∂L(x(t), λ(t), t)/∂x(t) and
∂L(x(t), λ(t), t)/∂λ(t) exist and are continuous, then the
optimum solution will be obtained when the following two
equations hold truth, i.e.,

∂L(x(t), λ(t), t)

∂x(t)
= Q(t)x(t) + P(t) + AT(t)λ(t) = 0

∂L(x(t), λ(t), t)

∂λ(t)
= A(t)x(t) − B(t) = 0. (6)

Equation (6) can be further rewritten into a matrix form as

W(t)Y(t) = G(t) (7)

where

W(t) :=
[
Q(t) AT(t)
A(t) 0m×m

]
∈ R

(n+m)×(n+m)

Y(t) :=
[

x(t)
λ(t)

]
∈ R

n+m

G(t) :=
[−P(t)
B(t)

]
∈ R

n+m. (8)

W(t) and G(t) are smoothly time-varying coefficient
matrix and vector due to the smoothness and continuity of
time-varying coefficient matrices Q(t), A(t) and vector B(t).
Y(t) ∈ R

(n+m) denotes an unknown vector and it needs to
be solved at any time instant t. Solving time-varying QP
problem (4) is equivalent to solving the matrix equation (7).
Since the convex QP problem (4) is time-varying, i.e., coef-
ficient vectors and matrices are changing as time t goes, the
theoretical solutions will change all the time (as shown in
Fig. 1). For getting better robustness property, steady states
are desired if the time-varying optimal solution is expected to
be obtained. In order to better illustrate the performance of
the proposed algorithm, the time-varying theoretical solution
can be written as

Y∗(t) = [
x∗T(t), λ∗T(t)

]T = W−1(t)G(t) ∈ R
n+m. (9)

III. PT-VP-RNN MODEL

In order to obtain the solution to the convex time-varying
QM (1) and QP (4) problems, a novel neural network can be
designed by the following three steps.

Step 1: A vector-type error function can be defined as
follows.

1) For time-varying QM (1), according to (3)

ε(t) = H(t)x(t) + PT(t) ∈ R
n+m. (10)

2) For time-varying QP (4), according to (7)

ε(t) = W(t)Y(t) − G(t) ∈ R
n+m. (11)

Step 2: To make the error function ε(t) approach zero, the
negative time derivative of error function ε(t) is necessary.
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Fig. 2. Four activation functions applied in our simulations, i.e., linear acti-
vation function φ1(u) (the red solid line), power-sigmoid activation function
φ2(u) with ξ = 4 and ω = 3 (the yellow dashed-dotted line), sinh activation
function φ3(u) (the blue dash line), and tunable activation function φ4(u) with
r = 0.5 (the cyan dashed-dotted line).

Based on our previous design experience [14], [42], a power-
type varying-parameter neural dynamic design formula can be
described as

ε̇(t) = dε(t)

dt
= −(

γ + tγ
)
	(ε(t)) (12)

where γ > 0 denotes the constant scalar-valued parameter,
and the design parameter γ + tγ is utilized to scale the con-
vergence rate of the formula. Different from the traditional
neural dynamic design approach, the design parameter γ + tγ

is changing as time instant t goes, and thus is named varying-
parameter neural dynamic design method. 	(·) denotes the
activation-function processing-array. In addition, each scalar-
valued processing-unit φ(·) of 	(·) should be a monotonically
increasing odd activation function. In this paper, four differ-
ent kinds of activation functions are applied and analyzed (as
shown in Fig. 2), and we illustrate them as follows.

1) Linear-type activation function

φ1(u) = u.

2) Power-sigmoid-type activation function

φ2(u) =
{

1+exp(−ξ)
1−exp(−ξ)

· 1−exp(−ξu)
1+exp(−ξu)

, if |u| ≤ 1
uω, otherwise

with ξ ≥ 2 and ω ≥ 3.
3) Sinh-type activation function

φ3(u) = ([exp(u) − exp(−u)]/2).

4) Tunable-type activation function
φ4(u) = sigr(u) + sig(u) + sig(1/r)(u) with r > 0 and

r 	= 1. Function sigr(u) is defined as

sigr(u) =
⎧⎨
⎩

|u|r, if u > 0
0, if and only if u = 0
−|u|r, if u < 0

where |u| denotes the absolute value of u ∈ R.

Step 3: By expanding the neural dynamic design for-
mula (12), a novel PT-VP-RNN is obtained.

1) For time-varying QM (1)

H(t)ẋ(t) = −Ḣ(t)x(t) − (
γ + tγ

)
	

(
H(t)x(t) + PT(t)

)
− ṖT(t). (13)

2) For time-varying QP (4)

W(t)Ẏ(t) = −Ẇ(t)Y(t) − (
γ + tγ

)
× 	(W(t)Y(t) − G(t)) + Ġ(t). (14)

The above (14) can be rewritten as

Ẏ(t) = (I(t) − W(t))Ẏ(t) − Ẇ(t)Y(t) − (
γ + tγ

)
× 	(W(t)Y(t) − G(t)) + Ġ(t) (15)

where I(t) denotes the identity matrix.
The ith-neural dynamic equation of PT-VP-RNN is

Ẏi =
n+m∑
j=1

(
Iij − Wij

)
Ẏi −

n+m∑
j=1

ẆijYj − (
γ + tγ

)

× φ

⎛
⎝n+m∑

j=1

WijYj − Gi

⎞
⎠ + Ġi (16)

where φ(·) denotes the scalar-valued processing unit of the
activation function 	(·).

According to (16), the topological graph of the PT-VP-RNN
is depicted in Fig. 3.

For the traditional neural dynamic method, the design
parameter is set as a constant, and thus it is named FP-RNN.
As for time-varying QM (1) and QP (4) problems, by omitting
time-varying term tγ , PT-VP-RNN (14) can be degenerated
into the corresponding of FP-RNN model.

1) For time-varying QM (1)

H(t)ẋ(t) = −Ḣ(t)x(t) − γ	
(
H(t)x(t) + PT(t)

)
− ṖT(t). (17)

2) For time-varying QP (4)

W(t)Ẏ(t) = −Ẇ(t)Y(t) − γ	(W(t)Y(t) − G(t))

+ Ġ(t). (18)

Remark 1: Mathematically, it can be seen from (14)
and (18) that the PT-VP-RNN would degrade into ZNN if the
time-varying parameter term tγ is omitted. The PT-VP-RNN
can be considered a more general form of ZNN, and ZNN
can be considered as a particular case of PT-VP-RNN with
t = 0. Besides, this difference leads to the following three
distinctions.

1) The design parameter of PT-VP-RNN takes time variable
t into consideration while FP-RNN does not consider
it. In other words, the convergent parameter of the FP-
RNN is fixed, while the proposed PT-VP-RNN is time-
varying.

2) Due to the influence of time-varying parameters, param-
eter γ just needs to be set as a small value, and
the practical performance of PT-VP-RNN would be
excellent.
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Fig. 3. Neural topological graph of the proposed PT-VP-RNN.

3) Theoretical analysis and mathematic proofs demonstrate
that the robustness of PT-VP-RNN is much better than
that of FP-RNN. Specifically, when solving disturbed
optimization problems, the errors of FP-RNN is upper-
bounded, while that of PT-VP-RNN can converge to
zero.

IV. THEORETICAL ANALYSIS OF ROBUSTNESS

In actual hardware implementation, perturbations and errors
often exist, for example, differentiation error. Therefore, it
is necessary to consider the robustness of a system with
perturbation.

The perturbed model of PT-VP-RNN is described as
follows.

1) For time-varying QM (1)

H(t)ẋ(t) = −(
Ḣ(t) + 
D(t)

)
x(t) − (

γ + tγ
)

× 	
(
H(t)x(t) + PT(t)

) − ṖT(t) + 
K(t).

(19)

2) For time-varying QP (4)

W(t)Ẏ(t) = −(
Ẇ(t) + 
D(t)

)
Y(t) − (

γ + tγ
)

× 	(W(t)Y(t) − G(t)) + Ġ(t) + 
K(t).

(20)

where 
D(t) ∈ R
(n+m)×(n+m) denotes the differentiation

error of coefficient matrix W(t), and 
K(t) ∈ R
n+m

denotes the model-implementation error of the proposed
PT-VP-RNN solver.

Considering the similarity and space limitation, only
the robustness analysis of PT-VP-RNN for solving QP
problem (20) is discussed in this section, and the robustness
analysis of QM problem (19) is omitted here.

Theorem 1 (Upper Bound Theorem): For time instant t ∈
[0,+∞) and 0 < ϑD, ϑK, δW , δG < +∞, if ||
D(t)||F ≤
ϑD ∈ R, ||
K(t)||2 ≤ ϑK ∈ R, ||W−1(t)||F ≤ δW ∈ R,
||G(t)||2 ≤ δG ∈ R, then the upper bound of the absolute value
of computation error ε(t) = W(t)Y(t) − G(t) corresponding
to the perturbed PT-VP-RNN model (20) when using a linear
activation function is [(1 + √

n + m)τ ]/2, where τ = (ϑK +
ϑD)/(α(γ + tγ )−ϑDδW ) with α ≥ 1, and it will converge to
zero as time instant t → +∞ with PT-VP-RNN solver in the
case of α(γ + tγ ) − ϑDδW > 0.

Proof: For further discussion, a Lyapunov function candi-
date [43] is defined as

V(t) = 1

2
||ε(t)||22 = 1

2
εT(t)ε(t) =

n+m∑
i=1

1

2
ε2

i (t) ≥ 0 (21)

where ε(t) = W(t)Y(t)−G(t) and ||·||2 denotes the Euclidean
norm of a vector. The time derivative of Lyapunov function
V(t) is

V̇(t) = dV(t)

dt
= εT(t)

dε(t)

dt
= εT(t)ε̇(t). (22)

Substituting (12) into (22), we have

V̇(t) = −(
γ + tγ

)
εT(t)	(ε(t))

= −(
γ + tγ

) n+m∑
i=1

εi(t)φ(εi(t)) (23)
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where φ(·) denotes the element of an activation function vector
	(·). Since γ > 0 and t > 0, the monotone odd activation
function φ(·) guarantees the following conditions.

1) If εi(t) > 0 or εi(t) < 0, then εi(t)φ(εi(t)) > 0 and
V̇(t) < 0.

2) If and only if εi(t) = 0, then εi(t)φ(εi(t)) = 0 and
V̇(t) = 0.

Considering the definition of the error vector in (11), i.e.,
ε(t) = W(t)Y(t) − G(t), we have Y(t) = W−1(t)(ε(t) +
G(t)). The time derivative of the error vector ε(t) is ε̇(t) =
W(t)Ẏ(t) + Ẇ(t)Y(t) − Ġ(t). Substituting these three equa-
tions into the perturbed PT-VP-RNN model (20) and ε̇(t) is
reformulated as

ε̇(t) = −(γ + tγ )	(ε(t)) − 
D(t)W−1(t)ε(t)

+ 
K(t) − 
D(t)W−1(t)G(t). (24)

The time derivative of Lyapunov function with
perturbation is

V̇(t) = εT(t)ε̇(t)

= εT(t)
(
−(

γ + tγ
)
	(ε(t)) − 
D(t)W−1(t)ε(t)

+ 
K(t) − 
D(t)W−1(t)G(t)
)

= −(
γ + tγ

)
εT(t)	(ε(t)) + εT(t)T (t)ε(t)

+ εT(t)
K(t) + εT(t)
(
−
D(t)W−1(t)G(t)

)

= −(
γ + tγ

)
εT(t)	(ε(t)) + εT(t)

T (t) + T T(t)

2

+ εT(t)
K(t) + εT(t)
(
−
D(t)W−1(t)G(t)

)
(25)

where T (t) = −
D(t)W−1(t).
With |λmax(·)| ≤ || · ||F, the second term of the

right hand side of (25) can be written as the following
inequalities, i.e.,

εT(t)
T (t) + T T(t)

2
ε(t)

≤ εT(t)ε(t)

∣∣∣∣λmax

(T (t) + T T(t)

2

)∣∣∣∣
≤ εT(t)ε(t)

∣∣∣∣∣
∣∣∣∣∣

D(t)W−1(t) + (


D(t)W−1(t)
)T

2

∣∣∣∣∣
∣∣∣∣∣
F

≤ εT(t)ε(t)||
D(t)W−1(t)||F (26)

where ||·||F denotes the Frobenius norm of a vector.
According to matrix theory [44], i.e.,

||
D(t)W−1(t)||F ≤ ||
D(t)||F||
W−1(t)||F, (26) is
reformulated as

εT(t)
T (t) + T T(t)

2
ε(t)

≤ εT(t)ε(t)||
D(t)||F||
W−1(t)||F
≤ εT(t)ε(t)ϑDδW (27)

where ϑD and δW are the upper bounds of ||
D(t)||F and
||
W−1(t)||F, respectively.

Since each element of a vector is less than or equivalent to
the maximum of elements of a vector, the third term of the
right hand side of (25) satisfies the following inequality, i.e.,


K(t) ≤
n+m∑
i=1

max
1≤i≤n+m

|
Ki(t)|. (28)

From max1≤i≤n+m |
Ki(t)| ≤ ||
K(t)||2, (28) is further
written as

εT(t)
K(t) ≤
n+m∑
i=1

|εi(t)| · ||
K(t)||2

≤
n+m∑
i=1

|εi(t)| · ϑK (29)

where ϑK is the upper bound of ||
K(t)||F.
Similarly, the fourth term of the right hand side of (25)

satisfies the following inequalities, i.e.,

εT(t) ·
(
−
D(t)
W−1(t)G(t)

)

≤
n+m∑
i=1

|εi(t)| max
1≤i≤n+m

∣∣∣(
D(t)
W−1(t)G(t)
)

i

∣∣∣

≤
n+m∑
i=1

|εi(t)| · ||
D(t)
W−1(t)G(t)||2. (30)

According to Cauchy–Buniakowsky–Schwarz inequality
||β · χ ||2 ≤ ||β||2 · ||χ ||F (where β is a vector and χ is a
matrix), (30) is reformulated as

εT(t) ·
(
−
D(t)
W−1(t)G(t)

)

≤
n+m∑
i=1

|εi(t)| · ||
D(t)
W−1(t)||F · ||G(t)||2. (31)

Based on [44], we have ||
D(t)
W−1(t)||F ≤ ||
D(t)||F ·
||
W−1(t)||F, (31) is reformulated as

εT(t) ·
(
−
D(t)
W−1(t)G(t)

)

≤
n+m∑
i=1

|εi(t)| · ||
D(t)
W−1(t)||F · ||G(t)||2

≤
n+m∑
i=1

|εi(t)| · ||
D(t)||F · ||
W−1(t)||F · ||G(t)||2

≤
n+m∑
i=1

|εi(t)| · ϑDδWδG . (32)

Substituting inequalities (27), (29), and (32) into (25), the
following inequality is obtained, i.e.,

V̇(t) ≤ −(
γ + tγ

)
εT(t)	(εi(t)) + εT(t)ϑDδWε(t)

+
n+m∑
i=1

|εi(t)| · ϑK +
n+m∑
i=1

|εi(t)| · ϑDδWδG

= −
n+m∑
i=1

|εi(t)| · ((
γ + tγ

)
	(|εi(t)|) − ϑDδW |εi(t)|

− ϑK − ϑDδWδG
)
. (33)
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In order to analyze the above inequality easily, we can
define ϒ(εi(t)) = (γ + tγ )	(|εi(t)|) − ϑDδW |εi(t)| −
ϑK − ϑDδWδG . Evidently, V̇(t) is determined by
ϒ(εi(t)) which can be discussed by the following two
cases, i.e.,

ϒ(εi(t)) =
{≥ 0, ∀i = 1, 2, . . . , n + m

< 0, ∃i = 1, 2, . . . , n + m.
(34)

First, If ϒ(εi(t)) ≥ 0, then V̇ ≤ 0. According to the second
theorem of Lyapunov stability, as V(t) ≥ 0 and V̇(t) < 0 [i.e.,
(21) and inequality (33)], the error vector ε(t) will converge
to zero, which means that the state vector Y(t) will converge
to the theoretical solution Y∗(t). In addition, the steady state
of the system will be reached and V(t) will stop decreasing
when V̇(t) = 0.

Second, if ϒ(εi(t)) < 0, then the right hand side of (33)
is positive, which means that V̇(t) has an upper bound. There
exist two conditions.

1) If V̇(t) < 0, with V(t) ≥ 0, the error vector will con-
verge to zero, and the steady state of the system will be
reached.

2) If V̇(t) > 0, without loss of generality, considering linear
activation function φ(|εi(t)|) = τ |εi(t)|(τ ≥ 1), (33) is
reformulated as

V̇(t) ≤ −
n+m∑
i=1

|εi(t)
∣∣(γ + tγ

)
τ
∣∣εi(t)| − ϑDδW |εi(t)|

−ϑK − ϑDδWδG

= −(
τ
(
γ + tγ

) − ϑDδW
) n+m∑

i=1

|εi(t)|

×
(

|εi(t)| − ϑK + ϑDδWδG
τ(γ + tγ ) − ϑDδW

)
. (35)

Considering V̇(t) > 0, V(t) will increase as time t goes,
which leads to the increase of |εi(t)|. The upper bound of
V̇(t) will decrease with the increase of |εi(t)|. Therefore,
there always exists a certain moment when V̇(t) ≤ 0, and
the system would be stable again at that moment. In other
words, |εi(t)| has an upper bound, and it will be reached when
V̇(t) = 0. For the convenience of further discussion, we can
define � = (ϑK + ϑDδWδG)/(τ (γ + tγ ) − ϑDδW ). When
V̇(t) = 0, the right hand side of (35) is equivalent to zero, i.e.,∑n+m

i=1 |εi(t)| ·(|εi(t)|−�) = 0. Since |εi(t)| is an independent
variable, function |εi(t)| · (|εi(t)| − �) associated with |εi(t)|
has a negative minimum value, which can be obtained when
|εi(t)| = �/2.

In conclusion, |εi(t)| · (|εi(t)| − �) is positive when
|εi(t)| > � . Since

∑n+m
i=1 |εi(t)| · (|εi(t)| − �) = 0, i.e., the

sum of all the n + m terms of |εi(t)| · (|εi(t)| − �) (i =
1, 2, . . . , j, . . . , n + m) is zero, the upper bound |εj(t)| will
be obtained if and only if the rest of the n + m − 1 terms of
|εi(t)| · (|εi(t)| − �) reach the minimum points, which means

|εi(t)| = �/2. To quantitatively illustrate our discussion, when
V̇(t) = 0, i.e.,

n+m∑
i=1

|εi(t)| · (|εi(t)| − �)

= |εj(t)|
(|εj(t)| − �

) +
n+m∑

i=1,i	=j

|εi(t)|(|εi(t)| − �)

= |εj(t)|2 − � |εj(t)| +
n+m∑

i=1,i	=j

|εi(t)|(|εi(t)| − �)

= 0. (36)

Substituting � = (ϑK + ϑDδWδG)/(τ (γ + tγ ) − ϑDδW )

into (36) and the following equation is obtained, i.e.,

n+m∑
i=1

|εi(t)| · (|εi(t)| − �)

= |εj(t)|2 − |εj(t)|
(

ϑK + ϑDδWδG
τ(γ + tγ ) − ϑDδW

)

− n + m − 1

4

(
ϑK + ϑDδWδG

τ(γ + tγ ) − ϑDδW

)2

= 0. (37)

Hence, |εi(t)| will reach the upper bound when i = j, and
the upper bound is

εj(t) = 1

2

(
1 + √

n + m
)
ρ (38)

where ρ = (ϑK + ϑDδWδG)/(τ (γ + tγ ) − ϑDδW ), and
|εn+m(t)| will converge to zero when time t → +∞.

The proof is thus completed.

V. ILLUSTRATIVE EXAMPLES

In this section, comparative simulations are conducted
to verify the aforementioned theoretical analysis and the
effectiveness of the proposed PT-VP-RNN (14) for solving
time-varying QM and QP problems.

The simulations are performed with MATLAB R2016a, on
a MacBook Air (2015) with Intel Core i5 CPU at 1.6 GHz,
1600 MHz and 4GB of RAM.

Considering the following time-varying QM and QP
problems.

1) Time-varying QM

minimize
1

2
xT(t)H(t)x(t) + PT(t)x(t). (39)

2) Time-varying QP

minimize
1

2
xT(t)Q(t)x(t) + PT(t)x(t)

subject to A(t)x(t) = B(t) (40)

where

H(t) :=
[

sin t + 2 sin t
cos t sin t + 2

]

W(t) :=
⎡
⎣sin t + 2 sin t sin 3t

cos t sin t + 2 cos 3t
sin 3t cos 3t 0

⎤
⎦
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(a) (b)

(c) (d)

Fig. 4. Residual errors ||x(t)+H−1(t)P(t)||2 of the perturbed PT-VP-RNN
and FP-RNN (with γ = 1) when solving time-varying QM (39) with different
activation functions during t ∈ [0, 8]. (a) Linear. (b) Power-sigmoid. (c) Sinh.
(d) Tunable.

P(t) := [
sin 2t cos 2t

]T
, G(t) := [

sin 2t cos 2t − cos 2t
]T

A(t) := [ sin 3t cos 3t], B(t) := cos 2t

x(t) := [x1(t) x2(t)]
T, Y(t) := [x1(t) x2(t) λ1(t)]

T.

For illustrating the robustness, the model-implementation
errors considered in the perturbed PT-VP-RNN (20) are as
follows.

1) For time-varying QM


D(t) := ϑD

[
cos 4t − sin 4t
sin 4t cos 4t

]


K(t) := ϑK

[
sin 4t
cos 4t

]
. (41)

2) For time-varying QP


D(t) := ϑD

⎡
⎣cos 4t − sin 4t cos 3t

sin 4t cos 4t sin 3t
cos 3t sin 3t 0

⎤
⎦


K(t) := ϑK

⎡
⎣sin 4t

cos 4t
sin 4t

⎤
⎦. (42)

with ϑD = ϑK = 0.6.

A. Error Analysis

In this part, the error convergence of the perturbed PT-VP-
RNN and the traditional FP-RNN for solving time-varying
QM (39) and QP (40) problems is analyzed. A large error
situation is considered to illustrate the strong robustness of
PT-VP-RNN. In addition, how to set the design parameter γ

is also discussed.
First, the proposed perturbed PT-VP-RNN is applied to solv-

ing a time-varying QM [i.e., considering errors 
D(t) and

K(t) in (41)], and the simulation results are shown in Fig. 4.

(a) (b)

(c) (d)

Fig. 5. Residual errors ||Y(t)−W−1(t)G(t)||2 of the perturbed PT-VP-RNN
and FP-RNN (with γ = 1) for solving time-varying QP problem (40) with
different activation functions during t ∈ [0, 10]. (a) Linear. (b) Power-sigmoid.
(c) Sinh. (d) Tunable.

From the error curves shown in Fig. 4, we can see that, start-
ing from randomly initial state x(0), using whatever activation
functions, the residual errors ||x(t) + H−1(t)P(t)||2 of time-
varying QM (39) converge to zero. During this solving process,
the convergence time is very short. Specifically, if the error
threshold is set as 0.05, then the convergence time of the PT-
VP-RNN is only 5.356 s by using a linear activation function,
which the traditional FP-RNN cannot. Under the same error
threshold, the convergent time of PT-VP-RNN by using power-
sigmoid, sinh, and tunable activation functions are 5.037 s,
4.572 s, and 3.862 s, respectively. This above example veri-
fies the effectiveness of the proposed PT-VP-RNN with four
different activation functions.

Second, considering an equality constrained time-varying
QP problem (40) solved by the perturbed PT-VP-RNN (20)
[the perturbed terms are 
D(t) and 
K(t) in (42)]. The
residual errors is shown in Fig. 5. As is shown in this
figure, wherever the initial state x(0) starts, all the state
variables converge to the theoretical solution eternally, that
is to say, the residual errors converge to zero. When error
threshold is set as 0.25, the convergent time of time-varying
QP problem solved by the perturbed PT-VP-RNN (20) with
a linear, power-sigmoid, sinh, and tunable activation func-
tions are 9.362 s, 6.670 s, 5.007 s, and 2.075 s, respec-
tively. In summary, the simulation results prove the excellent
robustness performance of the proposed perturbed PT-VP-
RNN (20) with different activation functions for solving
time-varying QP problem, that is to say, the Theorem 1 in
Section IV.

Third, in order to illustrate the strong robustness and supe-
riority of the proposed perturbed PT-VP-RNN (20), strong
perturbation when solving the time-varying QM and QP prob-
lems, i.e., large errors ϑD = ϑK = 10, are considered. For
comparisons, the perturbed FP-RNN model is also illustrated.
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(a) (b)

(c) (d)

Fig. 6. Computational errors of the perturbed PT-VP-RNN and FP-RNN
(with γ = 1 and large errors ϑD = ϑK = 10) for solving time-varying
QM (39) with different activation functions. (a) Linear. (b) Power-sigmoid.
(c) Sinh. (d) Tunable.

TABLE I
CONVERGENT TIME t (S) WHEN RESIDUAL ERROR ε(t) OF QP

PROBLEM (40) REACHES 0.25 VIA PT-VP-RNN WITH

FOUR ACTIVATION FUNCTIONS

The simulative results are shown in Fig. 6. Compared with
the traditional FP-RNN model, we can see that the residual
errors ||x(t) + H−1(t)P(t)||2 synthesized by the perturbed
PT-VP-RNN (20) are much smaller than that of FP-RNN.
Specifically, when using PT-VP-RNN with linear, power-
sigmoid, sinh, and tunable activation functions, the maximum
residual errors are 176.9, 1.528, 0.697, and 1.951. In addition,
from Fig. 6, we can also see that the residual errors synthesized
by the FP-RNN fluctuate at the end. Contrastively, the resid-
ual errors synthesized by the PT-VP-RNN always converge
to zero finally, which verifies the robustness and superiority
of the proposed PT-VP-RNN when solving time-varying QP
problem in strong perturbed situations.

It is worth pointing out that the robustness of the PT-VP-
RNN can be further improved by increasing γ , which can be
seen from Table I.

B. Time-Varying Toeplitz Matrix With Different Dimensions

Compared with the traditional serial-processing algorithms,
recurrent neural network provides a powerful alternative to
solve time-varying problems in real-time due to the distribu-
tion processing and parallel character, for example, large-scale
computation situation. Therefore, analysis of different dimen-
sions n of time-varying coefficients W(t) and G(t) is necessary.

(a) (b)

(c) (d)

Fig. 7. Entry trajectories of the theoretical solution (the red dash-dot curves)
and PT-VP-RNN computed solution (the black solid curves) using power-
sigmoid activation function with different dimensions n, and the residual
errors. (a) Solutions of n = 5. (b) Residual error of n = 5. (c) Solutions
of n = 15. (d) Residual error of n = 15.

Suppose that time-varying Toeplitz matrices (diagonal-
constant matrices) W(t) and G(t) are obtained from the QP
problem. The specific matrices WT (t) and G(t) are⎡

⎢⎢⎢⎢⎢⎣

W1(t) W2(t) W3(t) · · · Wn(t)
W2(t) W1(t) W2(t) · · · Wn−1(t)
W3(t) W2(t) W1(t) · · · Wn−2(t)

...
...

...
. . .

...

Wn(t) Wn−1(t) Wn−2(t) · · · W1(t)

⎤
⎥⎥⎥⎥⎥⎦

(43)

where WT (t) = [W1(t),W2(t),W3(t), . . . ,Wn(t)]T ∈ R
n×1

denotes the first column vector of the above matrix W(t) (43).
Assume that W1(t) = sin t + 5 and W�(t) = cos t/(� − 1)

(� = 2, 3, . . . , n), and the time-varying vector G(t) ∈ R
n×1 is[

sin 3t sin
(
3t + π

2

)
sin

(
3t + (n−1)π

2

)]T
. (44)

The perturbed PT-VP-RNN (20) with time-varying model-
implementation errors 
D(t) ∈ R

n×n and 
K(t) ∈ R
n×1

(with ϑD = ϑK = 0.6) is illustrated as the following
forms, i.e.,

ϑD

⎡
⎢⎢⎢⎢⎢⎣

D1(t) D2(t) D3(t) · · · Dn(t)
D2(t) D1(t) D2(t) · · · Dn−1(t)
D3(t) D2(t) D1(t) · · · Dn−2(t)

...
...

...
. . .

...

Dn(t) Dn−1(t) Dn−2(t) · · · D1(t)

⎤
⎥⎥⎥⎥⎥⎦

(45)

ϑK
[
cos 4t cos

(
4t − π

2

)
cos

(
3t − (n−1)π

2

)]T
(46)

where DT (t) = [D1(t),D2(t),D3(t), . . . ,Dn(t)]T ∈ R
n×1

denotes the first column vector of matrix D(t) (45). Assume
that D�(t) = cos (3t + (� − 1)π/2) (� = 2, 3, . . . , n), the entry
trajectories of the theoretical solution W−1(t)G(t) with dimen-
sions n = 5 and n = 15 are shown in Fig. 7. From this figure
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we can see that even if the dimension n changes from n = 5
to n = 15, the state variables generated from the perturbed
PT-VP-RNN (20), starting from randomly initial states, can
always converge to the theoretical solutions.

In summary, all the above two simulation results verify the
effectiveness and robustness of the proposed PT-VP-RNN (20)
with different activation functions for solving time-varying
QM (39) and QP (40) problems under perturbations. In addi-
tion, compared with the traditional FP-RNN model, these
examples illustrate the superiority of the proposed PT-VP-
RNN for solving time-varying problems. These conclusions
also hold true in different matrix dimensions situation.

VI. APPLICATIONS

In this section, the proposed PT-VP-RNN is applied to
the inverse-kinematics motion planning of a Kinova JACO2

manipulator and a venture investment problem.

A. Robot Tracking Problem

The joint-angle vector of the Kinova JACO2

manipulator (with six degrees-of-freedom) is
θ = [θ1, θ2, θ3, θ4, θ5, θ6]T ∈ R

6. In order to illustrate
the strong robustness performance of the proposed PT-VP-
RNN (20), the digital computation errors and the external
perturbations are taken into consideration.

The forward kinematic equation is r = f (θ) [18], where
θ(t) ∈ R

6 denotes the joint-angular vector, and r(t) ∈ R
3

denotes the end-effector path. Due to the redundancy and non-
linearity of a robot manipulator, it is difficult to straightly
obtain its inverse kinematic solution θ(t) through known
r(t) [45]–[47]. A general approach is to resolve it at the
velocity level as

J (θ(t))θ̇(t) = ṙ(t) (47)

where θ̇ (t) denotes the joint-angular velocity; ṙ(t) denotes the
end-effector velocity; J (θ) = ∂f (θ)/∂θ ∈ R

3×6 denotes the
Jacobian matrix.

In order to obtain the solution to (47), a QP-based feed-back
control and repetitive motion (FCRM) scheme is written as

minimize
1

2
||θ̇ (t) + C(t)||22

subject to J (θ(t))θ̇(t) = ṙ(t) + U(r(t) − f (θ)) (48)

where C(t) = κ(θ(t) − θ(0)) with κ > 0 being the magnitude
of the response to the joint drift θ(t) − θ(0); U(t) ∈ R

3×3

denotes the feedback-controlled matrix; and || · ||2 denotes the
Euclidean norm of a vector.

For comparison and illustration, the motion planning of
the six degrees-of-freedom manipulator can be achieved by
solving the above QP problem (48) via the proposed per-
turbed PT-VP-RNN and the traditional FP-RNN. Comparisons
of tracking trajectories and final results synthesized by PT-VP-
RNN and FP-RNN when Kinova JACO2 manipulator tracking
a “butterfly” path are shown in Fig. 8. As can be seen from
Fig. 8(a), when using FP-RNN, although the end-effector task
is completed, the tracking trajectories cannot coincide with the
expected path. By contrast, Fig. 8(b) shows the same tracking

(a) (b)

Fig. 8. Comparisons of tracking trajectories synthesized by perturbed
FP-RNN and PT-VP-RNN when a Kinova JACO2 manipulator tracks a but-
terfly path. (a) Tracking trajectories with the perturbed FP-RNN. (b) Tracking
results with the perturbed FP-RNN.

(a) (b)

Fig. 9. Comparisons of position errors when the Kinova JACO2 manip-
ulator tracks a butterfly path synthesized by PT-VP-RNN and FP-RNN via
FCRM scheme (48) (with linear activation function and γ = 100). (a) Position
errors with the perturbed FP-RNN. (b) Position errors with the perturbed
PT-VP-RNN.

(a) (b)

Fig. 10. Orientation behaviors of the Kinova JACO2 robot manipulator when
tracking a butterfly shape trajectory synthesized by FP-RNN and PT-VP-RNN.

task when using the proposed PT-VP-RNN (20). Evidently,
the task is finished very well, and the tracking trajectories
well-match the expected path.

The tracking performance with the two neural networks
can be further verified by position errors of the end-effector
shown in Fig. 9. From the position error curves, we can see
quite evidently that the errors synthesized by PT-VP-RNN
can converge to zero as time t passes by, but the position
errors synthesized by FP-RNN are diverging. Furthermore,
the corresponding orientation behaves are shown in Fig. 10.
The simulative results prove the advantage of the proposed
PT-VP-RNN when solving robot motion planning problems.

In summary, this application to inverse-kinematics control
of the six degrees-of-freedom Kinova JACO2 robot manip-
ulator demonstrates the effectiveness and high accuracy of
the proposed PT-VP-RNN (14) on solving time-varying QP
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TABLE II
AVERAGE RETURN ri OF SECURITIES

Fig. 11. Error of average expected rate-of-return of investment securities
synthesized by the PT-VP-RNN method.

problems and availability of handling robot motion planning
problems.

B. Venture Investment Problem

According to Markowits’ mean-variance portfolio
model [48], we have

minimize σ 2(t) = xT(t)�(t)x(t)

subject to dT(t)x(t) = ν(t) (49)

where variance σ 2(t) = ∑n
i
∑n

j xi(t)σi,j(t)xj(t) =
xT(t)�(t)x(t) with �(t) denoting the covariance matrix,
and it represents the investment risk; x = (x1, x2, . . . , xn)

T

denotes the coefficient vector of investment proportion;
and xi (i = 1, 2, . . . , n) is the proportion of each indi-
vidual security in the total investment (i.e., the portfolio);∑n

i=1 xi(t) = 1 (n ≥ 2) denotes the normalized initial
investment; d(t) = (d1(t), d2(t), . . . , dn)

T denotes the vector
of the desired rate-of-return; and ν(t) denotes the profitability
measure index of securities.

Considering that we would like to invest three securities.
The average return ri(i = 1, 2, 3) of each security is fluctu-
ating within a small certain range (i.e., the time-varying sine
functions), and the data are shown in Table II. The risk related
covariance matrix �(t) can be calculated as

�(t) = cov
(
ri(t), rT

i (t)
)

=
⎡
⎣0.100162 0.045864 0.005712

0.045864 0.210773 0.028283
0.005712 0.028283 0.066884

⎤
⎦ (50)

and in order to simplify the operation, the small fluctuation is
omitted.

The simulations are conducted in MATLAB R2017b, on
a MacBook Pro (15-inch, 2017) with Intel Core i7 CPU

TABLE III
OPTIMAL VENTURE PORTFOLIO OF INVESTMENT

SECURITIES

at 2.8 GHz, 2133 MHz LPDDR3 and 16 GB of RAM.
Simply considering that the average expected return ν is
0.15 + 0.01 ln(1 + t), which is raising in a slow trend with
time-varying logarithmic function. The error condition of the
simulative result is shown in Fig. 11. As we can see from this
figure, the error converges to zero (error accuracy assump-
tion is set as 0.0001) in the range of t ∈ [0, 3.3], and the
optimal venture portfolio of the three funds can be seen from
Table III (the sampling time is chosen as 0.4125 s). For
example, if we want to make a decision of investment to
the three securities at time instant t = 2.4750 s, the propor-
tions of the money invested are 20.77%, 7.00%, and 72.23%,
respectively.

In summary, both the robot tracking example and the
venture investment example verify the effectiveness, accu-
racy, and widespread availability of the proposed PT-VP-RNN
method.

VII. CONCLUSION

In this paper, a PT-VP-RNN is proposed for solving time-
varying QM and QP problems. With the Lagrange and neural
dynamic design method, the PT-VP-RNN is derived in detail.
Theoretical analysis shows that the residual errors of PT-VP-
RNN can converge to zero in the case of various interferences.
Two numerical computational examples and comparisons with
the traditional FP-RNN prove that the state solutions to
the time-varying QM and QP problems generated by PT-
VP-RNN can converge to the theoretical solution efficiently
and accurately. All the numerical experiments with the large
error conditions, different design parameters, and different
dimensions of time-varying coefficients verify the effective-
ness, accuracy and robustness of the proposed PT-VP-RNN
when solving time-varying QM and QP problems. Finally,
a perturbed redundant robot tracking example and a venture
investment example further demonstrate the high-efficiency,
accuracy, and practicability of the proposed PT-VP-RNN. Our
future research is to explore a discrete-time varying-parameter
neural model, and to study its practical applications.
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