
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019 2419

Power-Type Varying-Parameter RNN for Solving
TVQP Problems: Design, Analysis,

and Applications
Zhijun Zhang , Member, IEEE, Ling-Dong Kong , Student Member, IEEE,

and Lunan Zheng , Student Member, IEEE

Abstract— Many practical problems can be solved by being
formulated as time-varying quadratic programing (TVQP) prob-
lems. In this paper, a novel power-type varying-parameter
recurrent neural network (VPNN) is proposed and analyzed to
effectively solve the resulting TVQP problems, as well as the orig-
inal practical problems. For a clear understanding, we introduce
this model from three aspects: design, analysis, and applications.
Specifically, the reason why and the method we use to design
this neural network model for solving online TVQP problems
subject to time-varying linear equality/inequality are described
in detail. The theoretical analysis confirms that when activated
by six commonly used activation functions, VPNN achieves a
superexponential convergence rate. In contrast to the traditional
zeroing neural network with fixed design parameters, the pro-
posed VPNN has better convergence performance. Comparative
simulations with state-of-the-art methods confirm the advantages
of VPNN. Furthermore, the application of VPNN to a robot
motion planning problem verifies the feasibility, applicability, and
efficiency of the proposed method.

Index Terms— Convergence, dynamic programing, quadratic
programing (QP), recurrent neural network (RNN), time-varying
problem.

I. INTRODUCTION

T IME-VARYING quadratic programing (TVQP) problems
have been widely studied for decades. In this paper,

three Subtopics related to why and how to exploit a new

Manuscript received June 20, 2017; revised May 28, 2018 and November 14,
2018; accepted December 2, 2018. Date of publication December 25, 2018;
date of current version July 17, 2019. This work was supported in part by
the National Natural Science Foundation under Grant 61603142 and Grant
61633010, in part by the Guangdong Foundation for Distinguished Young
Scholars under Grant 2017A030306009, in part by the Guangdong Youth
Talent Support Program of Scientific and Technological Innovation under
Grant 2017TQ04X475, in part by the Science and Technology Program of
Guangzhou under Grant 201707010225, in part by the Fundamental Research
Funds for Central Universities under Grant x2zdD2182410, in part by the
Scientific Research Starting Foundation of the South China University of
Technology, in part by the National Key R&D Program of China under
Grant 2017YFB1002505, in part by the National Key Basic Research Pro-
gram of China (973 Program) under Grant 2015CB351703, and in part by
the Guangdong Natural Science Foundation under Grant 2014A030312005.
(Corresponding authors: Zhijun Zhang; Ling-Dong Kong.)

The authors are with the School of Automation Science and Engi-
neering, South China University of Technology (SCUT), Guangzhou
510641, China, and also with the Human-Robot Intelligence Lab, Center
for Brain Computer Interfaces and Brain Information Processing, SCUT,
Guangzhou 510641, China (e-mail: auzjzhang@scut.edu.cn; ldkong@ieee.org;
aulnzheng@sina.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2885042

method to handle TVQP problems are proposed and discussed.
Specifically, starting from the TVQP problem itself, the train-
of-thought behind different methods for solving this problem
will be discussed in Section I-A. Furthermore, to compensate
for the shortcomings of the traditional methods, a novel model
is proposed, and the design idea is analyzed in Section I-B.
Moreover, to implicitly consider the proposed model for
practical applications, Section I-C provides an overview of
the related works and offers a method for the proposed neural
model to solve kinematic problems of robots.

A. Subtopic 1: TVQP Problems Solving

The origin of quadratic programing (QP) can be traced to
the 1950s when H. W. Kuhn and A. W. Tucker redesigned
the optimal conditions of nonlinear problems. In recent years,
as computers have become more efficient, the global opti-
mization of heuristic algorithms and large-scale problems has
become increasingly popular; thus, numerous practical opti-
mization problems in industrial scenarios have been described
as QP problems [1]–[3]. For some problems which emphasize
high accuracy and dynamic impact [4], for example, robot
motion planning [5]–[10], optimal controller design [11], [12],
and electric power dispatching [13], [14], the impact of time
factors should be earnestly considered [15], [16]. Therefore,
we must find ways to describe and solve such TVQP problems.

TVQP problems can be handled in several ways. The
traditional approaches include the interior point method,
the conjugate gradient method, and an active set method.
Schochetman et al. [17] first proved the existence of a solution
for TVQP problems, i.e., if the eigenvalues of the cost matrices
of the TVQP are bounded from zero, then there must exist a
unique solution. On the basis of this property, some numerical
algorithms [18], in which the minimal arithmetic operations
are typically proportional to the dimension of the cube of
the Hessian matrix [O(n3)], were proposed to solve TVQP
problems. A numerical method named E47, which is based on
the linear variational equation, was proposed in [19] to solve
TVQP problems. Although feasible, however, when subject to
large-scale online problems, these numerical algorithms may
not be adequately efficient for computation.

O(n2) operation algorithms have been proposed to over-
come the computational deficiency. Jakovetic et al. [20]
proposed an augmented Lagrangian gossiping method based

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6859-3426
https://orcid.org/0000-0002-7671-6051
https://orcid.org/0000-0003-3884-2185


2420 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

on Lagrangian dual functions to solve cooperative convex
TVQP problems. Zhang et al. [21] proposed a Toeplitz scheme
for time-series Gaussian process regression of large data sets.
An O(n2) active set method was proposed by Gomez [22] to
solve related box-constrained TVQP problems. Nevertheless,
despite being computable problems, the computational time
is expensive. An O(n2)-operation algorithm requires more
than one and a half hours to invert a 100 000-dimensional
matrix [21]. Clearly, such performance is not satisfactory.

The recent resurgence of neural networks led to the pro-
posal of several neural-network-based approaches. Wang et al.
proposed a primal-dual neural network (PDNN) for solving
convex TVQP problems [23]–[26] and applied the network to
the kinematics resolution of robots [27]. Theoretical analy-
ses proved the global exponential convergence stability of
PDNN for tracking time-varying solutions of TVQP problems.
However, a complex projection function must be found when
designing and exploiting PDNN [27], which may increase the
difficulty in practical applications. A gradient neural network
(GNN) based on gradient descent was proposed to solve TVQP
problems [9]. GNN offers a simpler method for designing
the neural model, which is attached to a scalar-valued norm
energy function. Researchers have utilized GNN to solve
practical problems based on a convex TVQP framework [28].
However, when the task is time-varying, the traditional GNN
has difficulty tracking the theoretical solutions [29]. In other
words, residual errors always exist when the GNN is used to
solve time-varying problems [30]. Therefore, the GNN model
is more often applied to solving constant problems [31] rather
than time-varying problems.

B. Subtopic 2: Neural Model Design

Why choose a recurrent neural network (RNN) to handle
TVQP problems? An RNN [32]–[35] is a special type of neural
network that is good at processing sequence data, and its units
connect to form a directed loop. Generally, an artificial neural
network consists of multilayer neurons. A typical connection
model in a feedforward neural network has interconnection
only between layers and not between neurons in the same
layer. On this basis, an RNN combines the circular connection
of hidden layers to learn features and their dependencies
from sequential to temporal data [36]–[38]. Each individual
computing unit in an RNN hidden layer corresponds to the
state of a certain time node in the data, which could be a simple
neuron or a neuron layer of myriad gated control systems.
Moreover, each unit is sequentially connected through layers
that share parameters and is then propagated along with the
data sequence. This feature enables the current state of each
unit in an RNN to depend on its past state and thus has a
function similar to “memory,” i.e., the storage and processing
of long-term data signals [38]. Therefore, an RNN is suitable
for handling variable-length sequences and can theoretically
model any dynamic system, such as TVQP problems [39].

One of the classic RNNs, i.e., zeroing neural net-
work (ZNN), was proposed by Leung et al. [28] to
improve the performance of GNN for solving time-varying
problems [40]–[42]. ZNN tracks the optimal solutions of

time-varying problems through the utilization of derivative
information [43]. Many researchers have used the ZNN model
to handle time-varying problems. Xiao and Zhang [44] utilized
ZNN to address time-varying linear inequalities, and they
compared the convergence performance with that of GNN.
Comparisons of ZNN and GNN for solving time-varying
matrix equations were performed by Chen et al. [31]. The
global exponential convergence of ZNN for solving TVQP
problems was proved by Zhang and Li [45], and the robustness
performance of ZNN was theoretically proved and verified
through simulations by Zhang et al. [46]. The aforementioned
researchers and their research achievements have made con-
siderable contributions to the application of neural networks
to time-varying problems. However, when facing computa-
tionally large-scale situations, substantial time is required to
calculate the results. Zhang et al. [47] theoretically proved that
the residual errors of ZNN are upper bounded when solving
large-scale computations but cannot converge to zero. The
design parameter of ZNN must be set as large as possible
theoretical solutions must be tracked, which is clearly not
practical in real situations.

Under the aforementioned background, we aim to exploit
an effective computational method to solve TVQP prob-
lems. A novel power-type varying-parameter RNN (VPNN) is
designed and proposed in this paper to satisfy this high demand
requirement. A graphical representation of the development
of the VPNN model for solving TVQP problems constrained
by equality (TVQP-E) is shown in Fig. 1. First, the TVQP-
E problem is constructed and a series of optimizations are
performed. Specifically, the Lagrangian method [48] is imple-
mented to combine the objective function and constraints
of TVQP-E problems into a Lagrange function, which can
be rewritten in standard matrix form. A nonnegative slack
variable is introduced for TVQP problems constrained by
inequality (TVQP-I). On the basis of the Karush–Kuhn–Tucker
(KKT) conditions [49], the same matrix form as that of
TVQP-E can be obtained, and an important error function is
defined according to this matrix equation. An implicit neural
dynamics that contains a varying parameter is designed based
on our previous research [47] and inspired by GNN and
ZNN. In terms of the neural dynamics function, the block
diagram and the topological graph are thoroughly discussed for
the physical implementation of the proposed neural network.
In contrast to the existing ZNN model, which achieves only
an exponential convergence rate [44], [45], VPNN achieves
rapid convergence. Theoretical proofs demonstrate that the
convergence rate of VPNN is superexponential due to the
inclusion of the varying parameter, which will be discussed
in detail in Sections IV and V.

C. Subtopic 3: Applications to Robots

The application of neural networks in the control filed has
been studied for decades. With the prosperity of robotics
in recent years, increasingly advanced control algorithms are
needed for precise and flexible robot operations. RNN, which
possesses powerful computational capabilities, has become
one of the most important control methods [50].

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: POWER-TYPE VPNN FOR SOLVING TVQP PROBLEMS: DESIGN, ANALYSIS, AND APPLICATIONS 2421

Fig. 1. Graphical representation of the development of the proposed VPNN model for solving TVQP-E.

Tang and Wang [51] utilized the PDNN method to solve
the kinematic control problem of redundant manipulators.
Zhang et al. [52] designed a repetitive motion planning (RMP)
scheme based on linear variational inequalities attached to
PDNN and applied the scheme to control a PUMA560 manip-
ulator. Furthermore, in terms of the RMP scheme, three
RNNs and three numerical methods were applied to a Kinova
manipulator in [6], proving the superiority of neural dynamics
methods. Li et al. [53] proposed a distributed RNN method
based on the Nash equilibrium for cooperative control of
robot manipulators. Jin et al. [54] studied the optimization of
the manipulability of redundant robot manipulators by using
neural dynamics, and they carefully compared the advantages
of feedforward neural networks, dual neural networks, and
other RNNs for solving robot control problems [55]. A fully
connected RNN model using multiobjective continuous ant
colony optimization was proposed in [56] for gait generation
of an NAO robot. For the control planning of parallel robots,
Chen and Zhang proposed an approach based on ZNN dynam-
ics to protect against the superposition of noise [16].

In view of the related work, a practical application of VPNN
for robot control is considered by referring to [43], [52]–[54],
and [58]. Specifically, given the position and orientation of a
robot manipulator, the possible joint angles and joint velocities
that could be used to obtain the given position and orientation
are calculated [57]. This problem is called kinematics, and the
task of motion planning of robot manipulators is constructed
under a TVQP framework; hence, the joint angles and the
joint velocities of the end-effector can be precisely solved by
the proposed VPNN. In this paper, an RMP scheme based
on the VPNN is proposed for the kinematics resolution of a
six degrees-of-freedom (DOF) Kinova JACO2 robot manipu-
lator. On the basis of the TVQP framework, the applications
verify the feasibility and effectiveness of the VPNN model,
and a practical experiment is conducted to help the readers
thoroughly understand the proposed method.

The remainder of this paper is organized as follows.
Section II presents the problem formulation of TVQP prob-
lems. In Section III, the VPNN model is proposed and ana-
lyzed, and the ZNN model is also presented for comparison.
The convergence performance of VPNN which is activated

by six commonly used activation functions is analyzed in
Section IV in detail. Computer simulations of VPNN for solv-
ing TVQP problems are presented in Section V. In Section VI,
we analyze the practical application of a robot tracking task by
using the VPNN model. Section VII presents the conclusion.

The main contributions of this paper are listed as follows.

1) A power-type VPNN is proposed to solve TVQP prob-
lems in real time.

2) To the best of our knowledge, this paper is the first time
that this type of neural model has been proposed to solve
TVQP-E and TVQP-I.

3) The exponential convergence performance of VPNN
with six commonly used activation functions is dis-
cussed and analyzed in detail. Mathematically, the resid-
ual errors of VPNN are proved converge to zero in a
superexponential manner.

4) Detailed comparative simulations of VPNN and the
state-of-the-art method confirm the superiority of the
proposed model.

5) A practical example of a robot tracking problem illus-
trates the effectiveness, accuracy, and practicability of
the proposed VPNN method.

II. PROBLEM FORMULATION

A. TVQP-E Problem

The standard form of the TVQP-E problem is described as

min
1

2
xT(t)Q(t)x(t) + PT(t)x(t)

s.t. A(t)x(t) = B(t) (1)

where vector x(t) ∈ R
n at time instant t ∈ [0,+∞) is

unknown and to be solved in real time, Q(t) ∈ R
n×n denotes

the positive-definite Hessian matrix, P(t) ∈ R
n denotes the

coefficient vector, A(t) ∈ R
m×n denotes full-rank coefficient

matrix, and B(t) ∈ R
n denotes a coefficient vector. Moreover,

coefficient matrices Q(t) and A(t) and vectors P(t) and B(t),
together with their time derivatives Q̇(t), Ȧ(t), Ṗ(t), and Ḃ(t),
are assumed to be known and smoothly time varying or can
be estimated accurately. To guarantee the uniqueness of the
solution, such a TVQP-E problem (1) should be strictly

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



2422 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

convex with positive-definite Q(t) ∈ R
n×n at any time instant

t ∈ [0,+∞) [49]. To obtain the solution to the TVQP-E
problem (1), a solution algorithm whose errors between the
optimal solution and the state solution converge to zero as t
approaches ∞ must be designed.

To solve the TVQP-E problem (1), a Lagrange form of this
problem is constructed as follows:

L(x(t), λ(t), t) = 1

2
xT(t)Q(t)x(t) + PT(t)x(t)

+λT(t)(A(t)x(t) − B(t)), t ∈ [0,+∞) (2)

where λ(t) ∈ R
m denotes the vector of the Lagrange

multiplier.
Lemma 1 (Lagrangian Multiplier): For the TVQP-E prob-

lem (1), in the case of the existence and continuity of
∂L(x(t), λ(t), t)/∂x(t) and ∂L(x(t), λ(t), t)/∂λ(t), the opti-
mum solutions will be obtained when the following two
equations are established:

∂L(x(t), λ(t), t)

∂x(t)
= Q(t)x(t) + P(t) + AT(t)λ(t) = 0 (3)

∂L(x(t), λ(t), t)

∂λ(t)
= A(t)x(t) − B(t) = 0. (4)

Proof: See [48].
The above two equations can be further rewritten into a

matrix form as follows:

W(t)Y(t) = G(t) (5)

where

W(t) :=
�

Q(t) AT(t)
A(t) 0m×m

�
∈ R

(n+m)×(n+m)

Y(t) :=
�

x(t)
λ(t)

�
∈ R

n+m

G(t) := �−P(t) B(t)
� ∈ R

n+m . (6)

W(t) and G(t) are a smoothly time-varying coefficient
matrix and vector due to the smoothness and continuation of
time-varying coefficient matrices Q(t) and A(t) and vector
B(t). Y(t) ∈ R

(n+m) denotes an unknown vector, and it needs
to be solved at any time instant t . According to Lemma 1,
solving the TVQP-E problem (1) is equivalent to solve the
matrix equation (5). Since this problem (1) is time varying
(i.e., the coefficient vectors and matrices are changing as time
t passes), the theoretical solutions will continuously change.
Moreover, to obtain a better understanding and comparison of
the proposed algorithm, the time-varying theoretical solution
can be written as

Y∗(t) = [x∗T(t), λ∗T(t)]T = W−1(t)G(t) ∈ R
n+m . (7)

B. TVQP-I Problem

Considering that the inequality constraint is involved in the
TVQP-E problem (1), i.e.,

min
1

2
xT(t)Q(t)x(t) + PT(t)x(t)

s.t. A(t)x(t) = B(t)

K(t)x(t) ≤ D(t) (8)

where K(t) ∈ R
m×n is a full-rank coefficient matrix, D(t) ∈

R
n denotes a coefficient vector, and other variable is consistent

with before. The above inequality-constrained problem is
called the TVQP-I problem.

On the basis of convex optimization [49], a nonnegative
slack term is introduced into the inequality in the constraint
of TVQP-I (8), i.e.,

K(t)x(t) + l2(t) − D(t) = 0 (9)

where vector l2(t) ∈ R
p is defined as l2(t) = l(t) � l(t) and

operator � denotes m � n = [m1n1, m2n2, . . . , mιnι] ∈ R
ι.

On the basis of [48], a Lagrange function is defined as
follows:

L(x(t), ja(t), jb(t), t)

= 1

2
xT(t)Q(t)x(t)

+PT(t)x(t)+jT
a (t)(A(t)x(t)−B(t))

+jT
b (t)(K(t)x(t) + l2(t) − D(t)) (10)

where ja(t) and jb(t) denote the vectors of the Lagrange
multiplier.

The KKT conditions are introduced for (10), i.e.,

Q(t)x(t) + P(t) + ja(t)AT(t) + jb(t)KT(t) = 0 (11)

A(t)x(t) − B(t) = 0 (12)

K(t)x(t) + l2(t) − D(t) = 0 (13)

jb(t) � l(t) = 0. (14)

The above equations can be formulated as a matrix form as
in (5), i.e.,

W(t)Y(t) = G(t) (15)

where

W(t) :=

⎡
⎢⎢⎣

Q(t) AT(t) KT(t) 0
A(t) 0 0 0
K(t) 0 0 l(t)

0 0 2l̃(t) j̃b(t)

⎤
⎥⎥⎦

Y(t) := [x(t) ja(t) jb(t) l(t)]T

G(t) := [−P(t) B(t) D(t) 0]T. (16)

Diagonal matrices l̃(t) and j̃b(t) are defined as follows:

l̃(t) =

⎡
⎢⎢⎢⎣

l1(t) 0 · · · 0
0 l2(t) · · · 0
...

...
. . .

...
0 0 · · · ln(t)

⎤
⎥⎥⎥⎦ (17)

j̃b(t) =

⎡
⎢⎢⎢⎣

jb1(t) 0 · · · 0
0 jb2(t) · · · 0
...

...
. . .

...
0 0 · · · jbn(t)

⎤
⎥⎥⎥⎦. (18)

Following the same procedure, the time-varying theoretical
solution of the TVQP-I problem (8) is:

Y∗(t) = [x∗T(t), λ∗T(t)]T = W−1(t)G(t) ∈ R
n+m . (19)

Therefore, the design process of the neural model for
solving TVQP-I problems follows the same procedure as that
used for TVQP-E problems.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: POWER-TYPE VPNN FOR SOLVING TVQP PROBLEMS: DESIGN, ANALYSIS, AND APPLICATIONS 2423

III. NEURAL MODELS

The design process of the proposed VPNN for solving
TVQP problems is discussed and analyzed in detail in this
section. For comparisons and illustration, the traditional ZNN
model is also presented.

A. VPNN Model

To obtain the optimum of matrix equations (5) and (15),
a vector-type error function is defined as

e(t) = W(t)Y(t) − G(t). (20)

According to our previous neural dynamic design experi-
ence [47], the negative time derivative of error function e(t) is
necessary to make this error function e(t) approach zero. For
this reason, a power-type varying-parameter neural dynamic
design formula is described as

ė(t) = de(t)
dt

= −(γ + tγ )�(e(t)) (21)

where γ > 0 denotes the constant scalar-valued design
parameter, and the design parameter γ +tγ is used to scale the
convergence rate of the formula. In contrast to the traditional
neural dynamic design approach, the design parameter γ + tγ

is a function of time t , and the approach is thus termed as a
varying-parameter neural dynamic design method. �(·) is the
activation-function processing array. In addition, each scalar-
valued processing unit φ(·) of activation-function processing
array �(·) should be a monotonically increasing odd activation
function. In this paper, six commonly used activation functions
are applied and analyzed, which are described as follows.

1) Linear-Type Activation Function (Abbreviated
AFlinear):

φ1(u) = u.

2) Power-Type Activation Function (Abbreviated
AFpower):

φ2(u) = uω withω > 1.

3) Bipolar-Sigmoid-Type Activation Function (Abbreviated
AFb-Sigmoid):

φ3(u) = (1 + exp(−μ))(1 − exp(−μu))

(1 − exp(−μ))(1 + exp(−μu))
withμ � 2.

4) Sinh-Type Activation Function (Abbreviated AFsinh):

φ4(u) = exp(u) − exp(−u)

2
.

5) Tanh-Type Activation Function (Abbreviated AFtanh):

φ5(u) = exp(u) − exp(−u)

exp(u) + exp(−u)
.

6) Tunable-Type Activation Function (Abbreviated
AFtunable):

φ6(u) = sigr (u) + sig(u) + sig
1
r (u)

Fig. 2. Block diagram of VPNN.

with r > 0 and r �= 1. Function sigr (u) is defined as

sigr (u) =
⎧⎨
⎩

|u|r , ifu > 0
0, if and only ifu = 0
−|u|r , ifu < 0

(22)

where |u| denotes the absolute value of u ∈ R.
Since the constant scalar-valued designed parameter γ > 0,

parameter (γ + tγ ) → +∞ when time t → +∞. The detailed
convergence proof is presented in Theorem 1.

Substituting (20) into (21), the implicit dynamic equation
of VPNN is shown as

W(t)Ẏ(t) = −(γ + tγ )�(W(t)Y(t) − G(t))
−Ẇ(t)Y(t) + Ġ(t) (23)

where Ẇ(t) = dW(t)/dt , Ẏ(t) = dY(t)/dt , and Ġ(t) =
dG(t)/dt . According to the previously mentioned definition
of Y(t) ∈ R

n+m , we have

Y(t) := [xT(t), λT(t)]T

= [x1(t), x2(t), . . . , xn(t), λ1(t), λ2(t), . . . , λm(t)]T

(24)

which is an unknown matrix and needs to be solved at any
time instant t . Moreover, the initial state of matrix Y(t) is set
as Y(0) ∈ R

n+m .
Since the designed parameter γ + tγ is changing with

time t , the model based on (23) is called a power-type
VPNN. The block diagram of VPNN, which can be physically
implemented for the neural network, is shown in Fig. 2.

Rewriting (23) leads to the following result:
Ẏ(t) = (I(t) − W(t))Ẏ(t) − Ẇ(t)Y(t)

−(γ + tγ ) · �(W(t)Y(t) − G(t)) + Ġ(t) (25)

where I(t) denotes the identity matrix.
The i th neural dynamics of VPNN (23) is

Ẏi =
n+m�
j=1

(Ii j − Wij )Ẏi −
n+m�
j=1

Ẇi j Y j − (γ + tγ )

·φ
⎛
⎝n+m�

j=1

Wij Y j − Gi

⎞
⎠+ Ġi (26)

where φ(·) is the scalar-valued processing unit of �(·).

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



2424 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Fig. 3. Neural topological graph of VPNN.

Based on (26), the topological graph of VPNN (23) is shown
in Fig. 3.

B. ZNN Model

In the traditional neural dynamic design method, the design
parameter is set as a constant, i.e., it is fixed; thus, it is
called the fixed-parameter neural dynamic design method.
By omitting time term tγ , the VPNN (23) degrades into the
ZNN model, i.e.,

W(t)Ẏ(t) = −γ�(W(t)Y(t)−G(t))−Ẇ(t)Y(t)+Ġ(t) (27)

where the parameters are defined the same as those of VPNN.
Remark 1 (Difference Between VPNN and ZNN): Mathe-

matically, from (23) and (27), we state that the VPNN would
degrade into the ZNN when omitting time-varying parameter
tγ . The VPNN can be considered the general form of ZNN,
and ZNN can be considered as a particular case of VPNN with
t = 0. Such a difference leads to the following distinctions.

1) The design parameter of VPNN takes time variable t into
consideration, whereas ZNN does not. In other words,
the convergent parameter of the ZNN is fixed, while the
proposed VPNN is time varying.

2) Due to the influence of time-varying parameters,
the design parameter γ only needs to be set to a small
value, and the practical performance of the VPNN would
be good.

3) The theoretical analysis and mathematical proof show
that the robustness of the VPNN is much better than

that of ZNN. Specifically, when solving optimiza-
tion problems, the convergence rate of ZNN is expo-
nential, whereas the rate of the proposed VPNN is
superexponential.

IV. THEORETICAL ANALYSIS

In this section, the convergence performance of the VPNN
model is mathematically discussed and analyzed. In addition,
comparison results of convergence speed between the tradi-
tional ZNN and the proposed VPNN are illustrated. Note
that solving convex TVQP-E (1) and TVQP-I (8) problems
is equivalent to solving the matrix forms (5) and (15),
i.e., W(t)Y(t) = G(t). Discussing the solution to TVQP prob-
lems is equivalent to discussing the solutions to (5) and (15).

Theorem 1 (Global Convergence Theorem): Considering the
TVQP-E (1) and TVQP-I (8) problems, if a monotonically
increasing odd activation function array �(·) is used, then
the state variable Y(t) = [xT(t), λT(t)]T of the VPNN model
(23), starting from any initial state Y(0) ∈ R

n+m , globally
converges to the unique theoretical solution (19), i.e., Y∗(t) =
[x∗T(t), λ∗T(t)]T, as well as limt→+∞(Y(t) − Y∗(t)) = 0.
Furthermore, the theoretical solution x∗(t) to TVQP problems
is the first n elements of Y∗(t).

Proof: A Lyapunov function candidate is defined as

V(t) = �e(t)�2
2

2
= eT(t)e(t)

2
≥ 0 (28)

where e(t) is defined as e(t) = W(t)Y(t) − G(t) and � · �2
denotes the two norm of a vector. The time derivative of

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: POWER-TYPE VPNN FOR SOLVING TVQP PROBLEMS: DESIGN, ANALYSIS, AND APPLICATIONS 2425

Lyapunov function V(t) is

V̇(t) = dV(t)

dt
= eT(t)

de(t)
dt

= eT(t)ė(t). (29)

Substituting (21) into (29), we have

V̇VP(t) = −(γ + tγ )eT(t)�(e(t))

= −(γ + tγ )

n+m�
i=1

ei (t)φ(ei (t)) (30)

where φ(·) denotes the element of activation function vector
�(·). Since γ > 0 and t > 0, the monotonic singular odd
activation function φ(·) guarantees the following conditions.

1) If ei (t) > 0 or ei (t) < 0, then ei (t)φ(ei (t)) > 0 and
V̇VP(t) < 0.

2) If and only if ei (t) = 0, then ei (t)φ(ei (t)) = 0 and
V̇VP(t) = 0.

According to [58], since Lyapunov candidate V(t) is
positive semidefinite and its derivative V̇(t) is negative def-
inite, we conclude that Y(t) − Y∗(t) converges to zero glob-
ally, i.e., x(t) − x∗(t) converges to zero. The proof is thus
completed.

Remark 2: For comparison, the differential form V̇Z(t) of
Lyapunov candidate V(t) of the ZNN model (27) is as follows:

V̇Z(t) = −γ eT(t)�(e(t)) = −γ

n+m�
i=1

ei (t)φ(ei (t)). (31)

It can be easily proven that V̇Z(t) � 0 and that the ZNN
model (27) is also convergent.

Theorem 2 (Convergence Time Theorem): Considering two
Lyapunov functions VA(t) and VB(t), if the time derivatives
of VA(t) and VB(t) (i.e., V̇A(t) and V̇B(t)) satisfy V̇A(t) −
V̇B(t) > 0, then the convergence time from the same initial
value eA(0) = eB(0) satisfies TA > TB. Moreover, the resid-
ual errors satisfy �eA(t)�2 > �eB(t)�2 for t ∈ (0,+∞).

Proof: According to the definition of the Lyapunov
function in Theorem 1, computing the residual error e(t)
is equivalent to computing the Lyapunov function V(t). To
facilitate the following discussion, a scalar-type Lyapunov
function of ei (t) is defined as vi (t) = e2

i (t)/2, where ei (t)
is the i th element of e(t).

Considering the same ei (t) of Lyapunov functions vA(t)
and vB(t) and the residual errors eA(t) and eB(t) with the
same starting point eA(0) = eB(0), there always exists
eA(ta1) = eB(tb1) = χ̃ and vA(ta1) = vB(tb1) = χ̃2/2.
In other words, considering eB at time instant tb1 is equivalent
to considering eA at time instant ta1. Under this condition,
we have

v̇A(t) − v̇B(t)

= −γ eA(ta1)φ(eA(ta1)) + �γ + tγb1

�
eB(tb1)φ(eB(tb1))

= tγb1χ̃φ(χ̃) > 0. (32)

It means that v̇A(ta1) > v̇B(tb1). In the next moment,
we have eA(ta2) = eB(tb2) = χ̃ 
 and vA(ta2) = vB(tb2) =
(χ̃ 
)2/2 = χ̃2/2+�χ̃ , where �χ̃ → 0 is the step length from
χ̃2/2 to (χ̃ 
)2/2. Due to v̇B(t)− v̇A(t) > 0, the time cost from
χ̃2/2 to (χ̃ 
)2/2 satisfies ta2 − ta1 = �tA > tb2 − tb1 = �tB.

The convergence time from the same initial value v(0) to
v(t) possesses the following relationship:� v(t)

v(0)
�tA = TA > TB =

� v(t)

v(0)
�tB. (33)

That is, when eA(t) = eB(t), the convergence time TA >
TB. In other words, the residual errors satisfy eB(t) > eA(t)
when they work with the same length of time. With eA(0) =
eB(0) = 0, we can conclude that

�eA(t)�2 > �eB(t)�2∀t > 0. (34)

The proof is thus completed.
Theorem 3 (Residual Error Theorem): Considering the

TVQP-E (1) and TVQP-I (8) problems, assuming that
ZNN (27) and VPNN (23) have the same initial state (i.e.,
the same parameter and starting point), the residual error of
VPNN is always smaller than that of ZNN when they are
applied to solving (5) and (15), as well as the TVQP-E (1)
and TVQP-I (8) problems.

Proof: Based on Theorems 1 and 2, considering the
same ei (t) of Lyapunov functions vZ(t) and vVP(t) that are
starting from the same initial state ei (0), there exists eZ(tc1) =
eVP(td1) = χ and vZ(tc1) = vVP(td1) = χ2/2, where eZ(tc1)
and eVP(td1) denote the residual errors ei (t) solved by ZNN
and VPNN, respectively. Then, we have v̇Z(t) − v̇VP(t) =
tγd1χφ(χ) > 0, which means that v̇Z(tc1) > v̇VP(td1), and the
time cost from χ2/2 to (χ 
)2/2 satisfies tc2 − tc1 = �tZ >
td2 − td1 = �tVP. After integration, the convergence time
from the same initial value vi (0) to vi (t) satisfies TZ > TVP,
∀i ∈ {1, 2, . . . , m + n}.

That is, when eZ(t) = eVP(t), the convergence time of
VPNN is shorter than that of ZNN. In other words, eZ(t) is
always greater than eVP(t) when they work with the same
length of time. With eZ(0) = eVP(0), we can conclude that
�eZ(t)�2 > �eVP(t)�2 for t ∈ (0,+∞), which indicates that
the residual error ei (t) of VPNN is always smaller than that
of ZNN. The proof is thus completed.

Theorem 4 (Convergence Theorem With AFlinear): Con-
sidering (5) and (15), by using VPNN (23) with a linear
activation function φ1(u) = u, the state vector Y(t) converges
to the theoretical solution Y∗(t) = [x∗(t), λ∗(t)]T with a
superexponential convergence rate.

Proof: First, for comparison, the deviation vector Ỹ(t) =
Y(t) − Y∗(t) is defined, and the relationship between �Ỹ(t)�2
and �e(t)�2 is presented. According to the matrix theory [59],
we have�

λmin((WT(t)W(t))�Ỹ(t)�2 � �W(t)Ỹ(t)�2 (35)

where λmin((WT(t)W(t)) is positive and denotes the minimum
eigenvalue of (WT(t)W(t)) if W(t) is a real matrix. The
relationship between �Ỹ(t)�2 and �e(t)�2 is

�Ỹ(t)�2 � �W(t)Ỹ(t)�2�
λmin(WT(t)W(t))

= �W(t)(Y(t) − Y∗(t))�2�
λmin(WT(t)W(t))

= �e(t)�2�
λmin(WT(t)W(t))

. (36)

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



2426 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

The i th scalar-type formula of VPNN (23) with AFlinear
φ1 is

ėi (t) = dei (t)

dt
= −(γ + tγ )ei (t). (37)

Based on the differential equation theory in [60], the solu-
tion to (37) is

ei (t) = ei (0) exp

�
−
�

γ t + 1

γ + 1
tγ+1

��
(38)

where i = 1, 2, 3, . . . , n + m.
The vector-type solution is defined as

e(t) = e(0) exp

�
−
�

γ t + 1

γ + 1
tγ+1

��
. (39)

According to (36) and (39), the following inequality can be
obtained:

�Ỹ(t)�2 � �e(t)�2�
λmin(WT(t)W(t))

=

�����n+m�
i=1

e2
i (0) exp

�
−2
�
γ t + 1

γ+1 tγ+1
��

λmin(WT(t)W(t))
. (40)

Therefore, we have

lim
t→+∞ �Ỹ(t)�2 = 0. (41)

That is, Ỹ(t) globally converges to zero with a superexpo-
nential convergence rate, and the state solution Y(t) converges
to the unique theoretical solution Y∗(t) when t → +∞. The
proof is thus completed.

Theorem 5 (Convergence Theorem With AFpower): Con-
sidering (5) and (15), by using VPNN (23) with a power
activation function φ2(u) = uω (where ω is odd and ω > 1),
the state vector Y(t) converges to the theoretical solution
Y∗(t) = [x∗(t), λ∗(t)]T with a superexponential convergence
rate when |e(t)| ≥ 1 (where | · | denotes the absolute value).

Proof: Substituting AFpower φ2 = uω into (21) and
integrating with time t , the solution to VPNN with AFpower
φ2 is formulated as

e(t) =
�

(1−ω)

�
−γ t− 1

γ + 1
tγ+1

�
+e1−ω(0)

� 1
1−ω

. (42)

Based on (36), we have �Ỹ(t)�2 �
�e(t)�2/(λmin(WT(t)W(t)))1/2, which means that �Ỹ(t)�2 has
an upper bound via using VPNN (23). Since ω > 1, we have
(1 − ω) < 0 and (1/(1 − ω)) < 0. When time t → +∞,
the first term of (42), i.e., (1−ω)(−γ t − (1/γ +1)tγ+1), also
approaches +∞. Hence, with (1/1 −ω) < 0, each element of
e(t) will converge to zero, which makes �e(t)�2 and �Ỹ(t)�2
approach zero.

To prove the superexponential convergence, a Lyapunov
function candidate is defined as

V(t) = �e(t)�2
2

2
= eT(t)e(t)

2
� 0. (43)

The time derivative of V(t) is

V̇(t) = dV(t)

dt
= eT(t)

de(t)
dt

= eT(t)ė(t). (44)

Substituting (21) into (44), with AFpower φ2(ei (t)) =
(ei (t))ω, we have

V̇pow(t) = −(γ + tγ )

n+m�
i=1

ei (t)φ(ei (t))

= −(γ + tγ )

n+m�
i=1

eω+1
i (t). (45)

According to (30), with linear activation φ1(ei (t)) = ei (t),
we can obtain the time derivative of V(t) with AFlinear, i.e.,

V̇lin(t) = −(γ + tγ )

n+m�
i=1

e2
i (t). (46)

In the case of |e(t)| ≥ 1 with ω + 1 ≥ 2, we have
V̇pow(t) ≤ V̇lin(t) ≤ 0 with the same ei (t) of using AFpower
and AFlinear.

According to Theorem 2, the VPNN with AFpower pos-
sesses better convergence performance than that with AFlinear.
Since the superexponential convergence of VPNN with
AFlinear has been proved, VPNN with AFpower φ2(ei (t)) =
(ei (t))ω (where ω is odd and ω > 1) also achieves
superexponential convergence performance. The proof is thus
completed.

Theorem 6 (Convergence Theorem With AFb-Sigmoid):
Considering (5) and (15), by using VPNN (23) with a bipolar-
sigmoid activation function φ3(u) = (1 + exp(−μ))(1 −
exp(−μu)/(1−exp(−μ))(1+exp(−μu), the state vector Y(t)
converges to the theoretical solution Y∗(t) = [x∗(t), λ∗(t)]T

with a superexponential convergence rate when μ ≥ 2 and
1 ≥ |e(t)| ≥ 0.

Proof: First, according to (36), we have �Ỹ(t)�2 ≤
�e(t)�2/(λmin(WT(t)W(t)))1/2, which means that �Ỹ(t)�2 has
an upper bound via using VPNN (23).

Second, with the b-sigmoid activation function, we have

ėi (t) = dei (t)

dt
= −(γ + tγ )φ3(ei (t))

= −(γ + tγ )
(1 + exp(−μ))(1 − exp(−μei (t)))

(1 − exp(−μ))(1 + exp(−μei (t)))
. (47)

Based on [60], the vector form of solutions to (47) is

e(t) = 1

μ
ln

⎛
⎝1 + 1

2C1
exp(−μϒ�)

± 1

2

 �
1

C1
exp(−μϒ�) + 2

�2

− 4

⎞
⎠ (48)

where ϒ = �1 + exp(−μ))/(1 − exp(−μ)), � = tγ+1/(γ +
1) + γ t , and C1 = 1/(exp(με(0)) + exp(−με(0)) − 2) is a
constant term associated with initial value e(0).

From (36) and (48), we find that the upper bound of �Ỹ(t)�2
is determined by � .

Since γ > 1, when t → +∞, � will approach +∞.
Therefore, each element of e(t) in (48) will converge to zero,
which makes �e(t)�2 and �Ỹ(t)�2 in (36) approach zero.

Third, to prove the superexponential convergence rate
with the same ei (t) when using AFlinear and AFb-sigmoid,

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: POWER-TYPE VPNN FOR SOLVING TVQP PROBLEMS: DESIGN, ANALYSIS, AND APPLICATIONS 2427

the error between the time derivatives of the Lyapunov candi-
dates is obtained as

V̇bps(t) − V̇lin(t)

= −(γ +tγ )

n+m�
i=1

ei (t)

�
ϒ

1−exp(−μei (t))

1+exp(−μei (t))
−ei (t)

�
. (49)

For simplicity and further discussion, the last term of (49)
is defined as

HA(ei (t)) = ϒ
1 − exp(−μei (t))

1 + exp(−μei (t))
− ei (t). (50)

Considering 1 ≥ |ei (t)| ≥ 0, the derivative of function
HA(ei (t)) is described as

dHA(ei (t))

dei (t)
= dφ(ebpsi (t))

dei (t)
− dφ(elini (t))

dei (t)

= 2ϒμ exp(−μei (t))

(1 + exp(−μei (t)))2 − 1 (51)

where ϒ = (1 + exp(−μ))/(1 − exp(−μ)), φ(eposi (t)) and
φ(elini (t)) denote AFb-sigmoid and AFlinear activation units,
respectively. Since 1/ exp(μei (t)) + exp(μei (t)) ≥ 2, as long
as μ > 2 and ϒ > 1, the derivative of function HA(ei (t))
is nonnegative when ei (t) ∈ [0, ϑ] and negative when ei (t) ∈
(ϑ, 1], where ϑ = ln(2(ϒμ − 1) ± (4ϒμ(ϒμ − 2))1/2)/2 is
the point when ḢA(ei (t)) = 0. HA(ei (t)) will approach the
minimum value when ei (t) = 0 and ei (t) = 1, i.e., HA(0) =
HA(1) = 0, and in other cases HA(ei (t)) > 0. Therefore,
HA(ei (t)) ≥ 0, ∀t > 0. Since 1 ≥ |ei (t)| ≥ 0, we have
ei (t)HA(ei (t)) ≥ 0.

Similarly, according to the definitions of ei (t) and φ(ei (t))
in Theorem IV, we can draw the same conclusion when
ei (t) < 0. Hence, the following holds.

1) V̇bps(t)−V̇lin(t) = 0, if |ei (t)| = 0,∀i = 1, 2, . . . , n+m.
2) V̇bps(t)−V̇lin(t) < 0, if |ei (t)| �= 0, ∃i = 1, 2, . . . , n+m.
According to Theorem 2, the convergence performance of

VPNN with AFb-sigmoid is better than that with AFlinear.
In addition, from (36), �Ỹ(t)�2 converges to zero with super-
exponential convergence speed when 1 ≥ |e(t)| ≥ 0.The proof
is thus completed.

Theorem 7 (Convergence Theorem With AFsinh): Consid-
ering (5) and (15), by using VPNN (23) with a sinh activa-
tion function array φ4(u) = (exp(u) − exp(u))/2, the state
vector Y(t) converges to the theoretical solution Y∗(t) =
[x∗(t), λ∗(t)]T with a superexponential convergence rate.

Proof: First, the i th scalar-type formula of VPNN dynamic
designed formula (23) with AFsinh is written as

ėi (t) = dei (t)

dt
= −(γ + tγ )φ4(ei (t))

= −(γ + tγ )
exp(e(t)) − exp(−e(t))

2
. (52)

Based on the differential theory in [60], the solution to (52)
is

e(t) = ln

�
−C2 + exp(−�)

C2 − exp(−�)

�
(53)

where � = tγ+1/(γ + 1) + γ t and C2 =
(exp(e(0)) + 1

�
/(exp(e(0)) − 1) is a constant term

associated with initial value e(0). According to (36), we have
�Ỹ(t)�2 ≤ �e(t)�2/(λmin(WT(t)W(t)))1/2, which means
that �Ỹ(t)�2 has an upper bound via using VPNN dynamic
design formula (23). When time t → +∞, since γ > 1,
� = tγ+1/(γ + 1) + γ t also approaches +∞. Then, each
element of e(t) will converge to zero, which makes �e(t)�2
and �Ỹ(t)�2 approach zero.

Second, to prove the superexponential convergence of
VPNN, the error between the time derivative of the Lyapunov
candidate with AFlinear and AFsinh is obtained as

V̇sin(t) − V̇lin(t)

= −(γ + tγ )

n+m�
i=1

ei (t)

�
exp(ei (t))−exp(−ei (t))

2
−ei (t)

�
.

(54)

For simplicity and further discussion, the last term of (54)
is defined as

HB(ei (t)) = exp(ei (t)) − exp(−ei (t))

2
− ei (t). (55)

Considering ei (t) > 0, the derivative of function
HB(ei (t)) is

dHB(ei (t))

dei (t)
= dφ(esini (t))

dei (t)
− dφ(elini (t))

dei (t)

= 1

2
exp(ei (t)) + exp(−ei (t))) − 1

= 1

2

�
exp(ei (t)) + exp(−ei (t))

− 2 exp

�
ei (t)

2

�
exp

�
−ei (t)

2

��
(56)

where φ(εsini (t)) and φ(εlini (t)), respectively, denote AFsinh
and AFlinear activation units. According to inequality x2 +
y2 ≥ 2xy, the derivative of function HB(εi (t)) is positive, i.e.,

dHB(ei (t))

dei (t)
= 1

2
(exp(ei (t)) + exp(−ei (t))) − 1 ≥ 0. (57)

HB(ei (t)) will approach the minimum value when ei (t) = 0,
i.e., HB(0) = 0, which means that HB(ei (t)) ≥ 0, ∀t > 0.
Since ei (t) > 0, we have ei (t)HB(ei (t)) ≥ 0.

Similarly, according to the definitions of ei (t) and φ(ei (t))
in Theorem IV, we can draw the same conclusion when
ei (t) < 0, and the similar process is omitted.

Therefore, the following holds.

1) V̇sin(t)−V̇lin(t) = 0, if |ei (t)| = 0,∀ i = 1, 2, . . . , n+m.
2) V̇sin(t)−V̇lin(t) < 0, if |ei (t)| �= 0, ∃ i = 1, 2, . . . , n+m.

According to Theorem IV, the convergence performance
of VPNN with AFsinh is better than that with AFlinear.
From (36), we state that �Ỹ(t)�2 converges to zero with
superexponential convergence. The proof is thus completed.

Theorem 8 (Convergence Theorem With AFtunable): Con-
sidering (5) and (15), by using VPNN (23) with tunable
activation function φ6(u) = sigr (u)+sig(u)+sig

1
r (u), the state

vector Y(t) converges to the theoretical solution Y∗(t) =
[x∗(t), λ∗(t)]T with finite-time convergence property.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



2428 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Proof: If the maximum element value ei (t) of the residual
error converges to zero, then the residual error e(t) will
converge to zero, i.e., the state vector Y(t) converges to the
theoretical solution Y∗(t) = [x∗(t), λ∗(t)]T. Therefore, a Lya-
punov function of the maximum value of e(t) with AFtunable
φ6 is defined as VT = σ 2/2, where σ = max1�i�n+m{ei (t)}.
The derivative of VT is described as

VT = σ σ̇

= −(γ + tγ )σ (sigr (σ ) + sig(σ ) + sig
1
r (σ ))

� −3(γ + tγ )σmin{sigr (σ ), sig(σ ), sig
1
r (σ )}

= −3(γ + tγ )σmin{σ r , σ, σ
1
r }

= −3(γ + tγ )(2VT )
1
2 min{(2VT )

r
2 , (2VT )

1
2 , (2VT )

1
2r }.
(58)

According to the definition of the tunable action function,
the following two cases should be discussed with r > 0 and
r �= 1.

1) When 0 < r < 1, i.e., min{(2VT )
r
2 , (2VT )

1
2 , (2VT )

1
2r }

= (2VT )
r
2 , then (58) is

V̇T � −3(γ + tγ )(2VT )
r+1

2 . (59)

VT � 0 and V̇T � 0 (if and only if VT = 0,
V̇T = 0). According to [58], the state vector Y(t) of
VPNN (23) globally converges to the theoretical solution
Y∗(t) when 0 < r < 1. The finite time can be obtained.
By integrating (59) with time t , the following result is
obtained:

VT =
⎧⎨
⎩

� 1

2

�
�a(t)

� 2
1−r if0 � t � ta

= 0 ift > ta
(60)

where �a(t) = (1 − r)(−3tγ+1/2(γ + 1) − (3γ t/2)) +
e1−r (0) and ta is defined as the time at which con-
vergence is achieved. The solution to �a(t) = 0,
i.e., �a(ta) = (1 − r)(−3tγ+1

a /2(γ + 1) − (3γ ta/2)) +
e1−r (0) = 0.

2) When r > 1, then min{(2VT )
r
2 , (2VT )

1
2 , (2VT )

1
2r } =

(2VT )
1
2r , and (58) is

V̇T � −3(γ + tγ )(2VT )
r+1
2r . (61)

Similarly, we have VT � 0 and V̇T � 0 (if and only if
VT = 0, V̇T = 0). According to [58], the state vector
Y(t) of VPNN (23) globally converges to the theoretical
solution Y∗(t) when r > 1. The finite time can be
obtained as follows. By integrating (61) with time t ,
the following result is obtained:

VT =
⎧⎨
⎩

� 1

2
(�b(t))

2r
r−1 if0 � t � tb

= 0 ift > tb
(62)

where �b(t) = (r −1)(−3tγ+1/2(γ +1)−(3γ t/2))/2r +
e1−r (0), and tb is defined as the time at which conver-
gence is achieved, as well as the solution to �b(t) = 0,
i.e., �b(tb) = (r −1)(−3tγ+1

b /2(γ +1)−(3γ tb/2))/2r +
e1−r (0) = 0.

In conclusion, when using AFtunable φ6(e(t)), the upper
bound of the convergence time of VPNN is

tVP =
!

ta for0 < r < 1

tb forr > 1.
(63)

Note that if r = 1, the AFtunable φ6(e(t)) will degrade into
the AFlinear φ7(e(t)) = 3e(t).

On the basis of [61], the upper bound of the convergence
time tZ with ZNN is

tZ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(e(0))1−r

γ (1 − r)
for0 < r < 1

r(e(0))
r−1

1

γ (1 − r)
forr > 1.

(64)

Substituting tZ into �a(t) and �b(t), the following inequal-
ities are obtained:

�a(tZ) = −3

2
(1 − r)

�
γ tZ + tγ+1

Z

γ + 1

�
+ e1−r (0)

= −3

2
(1 − r)

tγ+1
Z

γ + 1
< 0

�b(tZ) = −3

2
(r − 1)

�
γ tZ + tγ+1

Z

γ + 1

�
+ e1−r (0)

= −3

2
(1 − r)

tγ+1
Z

γ + 1
< 0. (65)

Evidently, V̇T � 0 cannot be achieved with �a(t) < 0 and
�b(t) < 0, which means that if t = tZ, then �a(t) = 0, �b(t) =
0, and V̇T = 0, i.e., ta < tZ and tb < tZ. Since tZ is finite-
length time, the state vector Y(t) of VPNN (23) converges to
the theoretical solution with finite-time convergence property.
The proof is thus completed.

V. SIMULATION VERIFICATIONS

In this section, comparative simulations are conducted to
verify the effectiveness of the proposed VPNN for solving
TVQP problems. For comparison, the simulation results of
the same TVQP problems solved by ZNN are also presented.

The simulations are performed with MATLAB R2017b on
a MacBook Pro (2017) with an Intel Core i7 CPU at 2.8 GHz
with 16 GB of 2133-MHz LPDDR3 RAM.

Taking the following TVQP-E problem as an example, i.e.,

min
1

2
xT(t)Q(t)x(t) + PT(t)x(t)

s.t. A(t)x(t) = B(t) (66)

where

Q(t) :=
#

sin 2t + 2 cos 2t

cos 2t sin 2t + 2

$

P(t) :=
�

sin 3t
cos 3t

�

A(t) := [sin 4t, cos 4t]
B(t) := cos 5t

x(t) := [x1(t), x2(t)]T. (67)

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: POWER-TYPE VPNN FOR SOLVING TVQP PROBLEMS: DESIGN, ANALYSIS, AND APPLICATIONS 2429

Fig. 4. Residual errors �W(t)Y(t) − G(t)�2 when VPNN (dashed line) and
ZNN (solid line) are used to solve the TVQP-E problem (66) with different
activation functions during t ∈ [0, 10]. (a) AFlinear. (b) AFpower. (c) AFb-
sigmoid. (d) AFsinh. (e) AFtanh. (f) AFtunable.

Based on (5), the simplified form is rewritten as

W(t)Y(t) = G(t) (68)

where

W(t) :=
⎡
⎣sin 2t + 2 cos 2t sin 4t

cos 2t sin 2t + 2 cos 4t
sin 4t cos 4t 0

⎤
⎦

Y(t) := [x1(t), x2(t), λ(t)]T

G(t) := [− sin 3t,− cos 3t, cos 5t]T. (69)

A. Experiment 1: Residual Errors With Activation Functions

To verify the generality of applications with different types
of activation functions, the simulations of the TVQP problem
(66) solved by VPNN and ZNN with six activation functions
are illustrated in Fig. 4.

First, from the state curves of VPNN (i.e., dashed lines)
in Fig. 4(a)–(f), we find that during t ∈ [0, 10], all the state
variables Y(t) converge to the theoretical solution, i.e., Y(t)−
Y∗(t) converges to zero. This result verifies the proposed
global convergence Theorem 1. Second, by comparing the
dashed and solid lines, we find that the dashed lines approach
the t-axis earlier than do the solid lines. That is, comparison of
the convergence time of VPNN with that of ZNN when using

Fig. 5. Residual errors �W(t)Y(t) − G(t)�2 when VPNN with six different
activation functions are used to solve the TVQP-E problem (66) with different
design parameters γ . AFlinear (red solid line), AFpower (orange dashed-
dotted line), AFbipolar-sigmoid (maroon dashed line), AFsinh (olive dotted
line), AFtanh (magenta dashed line), and AFtunable (cyan dashed-dotted line).
(a) γ = 1. (b) γ = 5. (c) γ = 10. (d) γ = 15.

TABLE I

TIME COST WHEN ERRORS REACH 0.2 WITH DIFFERENT γ

the six activation functions shows that the convergence time
of the residual errors of VPNN is shorter than that of ZNN.
This result validates Theorem 3, as well as the effectiveness,
accuracy, and fast convergence performance of the proposed
VPNN for solving TVQP problems.

B. Experiment 2: Residual Error With Different
Parameter γ

In actual applications, the convergence performance can
be further improved by increasing the design parameter γ .
To illustrate this point, we monitor the residual errors
�W(t)Y(t)−G(t)�2 during the process of solving the TVQP-E
problem (66) with the VPNN model with γ = 1, 5, 10, 15.
As shown in Fig. 5, all the residual errors synthesized by
VPNN with different activation functions converge rapidly,
and the convergence time of the residual errors decreases
as γ increases. Table I quantitatively shows the specific
convergence time with different γ values. Note that AFsinh
and AFtunable have excellent performance, and the time cost
is less than 0.13 s when γ > 5. The simulation results further
verify Theorems 4–8.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



2430 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Fig. 6. Simulation results of VPNN and ZNN for solving the high-
dimensional TVQP-E problem. Red dotted curves denote the entry trajectories
of the theoretical solution. Blue solid curves denote the solution computed
when using ZNN. Black solid curves denote the solution computed when
using VPNN. (a) ZNN with five dimensions, n = 5. (b) ZNN with
15 dimensions, n = 15. (c) VPNN with five dimensions, n = 5. (d) VPNN
with 15 dimensions, n = 15. (e) Residual errors for five dimensions, n = 5.
(f) Residual errors for 15 dimensions, n = 15.

C. Experiment 3: High-Dimensional Cases

High-dimensional situations are common in actual appli-
cations. Therefore, the analysis of different dimensions n of
time-varying coefficients W(t) and G(t) is necessary.

Suppose that the time-varying Toeplitz matrix, which is
a diagonal-constant matrix, is obtained from the TVQP-E
problem (66). The specific matrix W(t) is⎡

⎢⎢⎢⎢⎢⎣

W1(t) W2(t) W3(t) · · · Wn(t)
W2(t) W1(t) W2(t) · · · Wn−1(t)
W3(t) W2(t) W1(t) · · · Wn−2(t)

...
...

...
. . .

...
Wn(t) Wn−1(t) Wn−2(t) · · · W1(t)

⎤
⎥⎥⎥⎥⎥⎦

(70)

where vector WI(t) = [W1(t), W2(t), W3(t), . . . , Wn(t)]T ∈
R

n×1 denotes the first column of matrix W(t) (70).
Let the initial W1(t) = sin t + 5 and W�(t) = cos t/(� −

1) (� = 2, 3, . . . , n). Vector G(t) ∈ R
n×1 is

[sin 4t sin (4t + π/2) sin (4t + [(n − 1)π]/2)]T. (71)

The entry trajectories of the theoretical solution W−1(t)G(t)
with dimensions n = 5 and n = 15 are shown in Fig. 6(a)–(d),

Fig. 7. Simulation results of a Kinova JACO2 manipulator for tracking a
butterfly path via VPNN. (a) Tracking trajectories of the links. (b) Expected
path and actual trajectories.

Fig. 8. Important variables during the task tracking period when the Kinova
manipulator tracks a butterfly path via VPNN. (a) End-effector position.
(b) Joint angles θ . (c) Joint-angle velocity θ̇ . (d) Position error.

respectively, show the convergence of the computed solutions
for solving TVQP problems with five and 15 dimensions.
We can clearly see from Fig. 6(a)–(d) that the convergence
performance of VPNN remains excellent when facing such
large-scale cases. However, the results of ZNN are not that
satisfactory. The convergence curves of ZNN are “confused,”
which means that the residual errors of ZNN are larger than
those of VPNN during convergence. Fig. 6(e) and (f) presents
the residual errors which quantitatively illustrate the conver-
gence times of ZNN and VPNN and verify the effectiveness
of VPNN for solving large-scale TVQP problems.

VI. APPLICATIONS TO ROBOTS

In this section, the proposed VPNN model is applied to
the inverse kinematics motion planning problem of a Kinova
JACO2 manipulator with six DOF. For such a robot, the joint
vector is generally written as θ = [θ1, θ2, θ3, θ4, θ5, θ6]T ∈ R

6.
The desired path of the end-effector is a complex butterfly. Due
to the nonlinearity of redundant robot manipulators, the posi-
tion and orientation of the end-effector are difficult to obtain
through forward kinematics [16], [53], [55]. According to the

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: POWER-TYPE VPNN FOR SOLVING TVQP PROBLEMS: DESIGN, ANALYSIS, AND APPLICATIONS 2431

Fig. 9. Experimental process of a Kinova JACO2 manipulator for tracking a butterfly path controlled by VPNN.

inverse kinematics theory, which is a fundamental problem in
the practical use of robot manipulators [57], the relationship
between the end-effector velocity ṙ(t) and the joint velocity
θ̇ (t) can be described as

J(θ(t))θ̇ (t) = ṙ(t) (72)

where J(θ) ∈ R
2×6 is the Jacobian matrix defined as J(θ) =

∂F(θ)/∂θ and F(θ) is the forward kinematics mapping.
m = 3 denotes the spatial dimension of the end-effector and
n = 6 denotes the six links. Considering RMP with the joint
velocity limit of the robot manipulator, a TVQP problem can
be introduced on the basis of [26] and [52], i.e.,

min
1

2
�R(t) + θ̇ (t)�2

2

s.t. J(θ(t))θ̇ (t) = ṙ(t) + (r(t) − F(θ)) (73)

where R(t) = �(θ(t) − θ(0)) with parameter � > 0, which
denotes the criterion of RMP, is the magnitude of joint
drift between joint θ(t) and initial joint θ(0). (t) denotes
the feedback control matrix. The above QP problem can be
rewritten as a matrix equation as in (5) and (15). Therefore,
motion planning can be achieved by using the proposed VPNN
model.

The simulation results of the Kinova JACO2 manipulator for
tracking a butterfly path via VPNN are shown in Figs. 7 and 8.
Specifically, Fig. 7(a) illustrates the motion trajectories of the
links of the manipulator. Fig. 7(b) illustrates the expected
path and actual trajectories, which demonstrates that the actual
trajectories are well matched with the expected path, and the
end-effector task is completed satisfactorily. Snapshots of the
physical experiment with a practical Kinova JACO2 manipu-
lator are shown in Fig. 9, which shows that the end-effector
is well finished. Fig. 8(a) and (b) shows the end-effector

position, joint angles, joint-angle velocities, and end-effector
position errors when the manipulator is tracking a butterfly
task. As shown in Fig. 8, the joint angles and velocities are
all smooth, and the end-effector position errors are within
[−1.5 × 10−3, 0.5 × 10−3].

In summary, this application to the kinematics control of
six-DOF robot manipulators demonstrates the effectiveness of
the proposed VPNN model (23) in solving TVQP problems
and in an application to a robot motion planning problem.

VII. CONCLUSION

In this paper, a power-type VPNN is proposed for solving
TVQP problems. The state solutions with the VPNN model
can converge to the theoretical solutions efficiently and exactly
with a superexponential convergence rate. Theoretical analysis
and simulation comparisons both prove that the proposed
VPNN possesses better convergence performance than the tra-
ditional ZNN model. The illustrative example results demon-
strate the advantages of the VPNN. Moreover, the application
to a robot motion planning problem further verifies the practi-
cability, effectiveness, efficiency, and accuracy of the VPNN.

REFERENCES

[1] B. Gu and V. S. Sheng, “A solution path algorithm for general parametric
quadratic programming problem,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 9, pp. 4462–4472, Sep. 2018.

[2] F. A. Andaló, G. Taubin, and S. Goldenstein, “PSQP: Puzzle solving
by quadratic programming,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 2, pp. 385–396, Feb. 2017.

[3] V. A. Papaspiliotopoulos, G. N. Korres, and N. G. Maratos, “A novel
quadratically constrained quadratic programming method for optimal
coordination of directional overcurrent relays,” IEEE Trans. Power Del.,
vol. 32, no. 1, pp. 3–10, Feb. 2015.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 



2432 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

[4] Z. Wang, L. Liu, Q.-H. Shan, and H. Zhang, “Stability criteria for
recurrent neural networks with time-varying delay based on secondary
delay partitioning method,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 10, pp. 2589–2595, Oct. 2015.

[5] Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C.-Y. Su, “Trajectory-tracking
control of mobile robot systems incorporating neural-dynamic optimized
model predictive approach,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 46, no. 6, pp. 740–749, Jun. 2016.

[6] Z. Zhang, L. Zheng, J. Yu, Y. Li, and Z. Yu, “Three recurrent neural
networks and three numerical methods for solving a repetitive motion
planning scheme of redundant robot manipulators,” IEEE/ASME Trans.
Mechatronics, vol. 22, no. 3, pp. 1423–1434, Jun. 2017.

[7] Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization approach
to smooth trajectories for motion planning with car-like robots,” in Proc.
IEEE Conf. Decision Control, Dec. 2015, pp. 835–842.

[8] M. A. Mousavi, B. Moshiri, and Z. Heshmati, “Cooperative control of
networked autonomous vehicles using convex optimization,” in Proc.
RSI Int. Conf. Robot. Mechatronics, Oct. 2015, pp. 681–687.

[9] A. Nazemi, “A neural network model for solving convex quadratic
programming problems with some applications,” Eng. Appl. Artif. Intell.,
vol. 32, no. 32, pp. 54–62, 2014.

[10] Y. Zhang, X. Yan, D. Chen, D. Guo, and W. Li, “QP-based refined
manipulability-maximizing scheme for coordinated motion planning and
control of physically constrained wheeled mobile redundant manipula-
tors,” Nonlinear Dyn., vol. 85, no. 1, pp. 245–261, Jul. 2016.

[11] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic programming
method for dynamic optimization problems,” Math. Program. Comput.,
vol. 7, no. 3, pp. 289–329, 2015.

[12] A. Bemporad, “A quadratic programming algorithm based on nonneg-
ative least squares with applications to embedded model predictive
control,” IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1111–1116,
Apr. 2016.

[13] K. Peng, F. Gao, and X. Guan, “Stochastic predictive control of battery
energy storage for wind farm dispatching: Using probabilistic wind
power forecasts,” Renew. Energy, vol. 80, pp. 286–300, Aug. 2015.

[14] J. Xu, X. Wang, and X. Li, “Successive quadratic programming method
for voltage/reactive power optimization in power systems,” Autom.
Electr. Power Syst., vol. 25, no. 23, pp. 4–8, 2001.

[15] C. Ge, C. Hua, and X. Guan, “New delay-dependent stability criteria
for neural networks with time-varying delay using delay-decomposition
approach,” IEEE Trans. Neural Netw., vol. 25, no. 7, pp. 1378–1383,
Jul. 2014.

[16] D. Chen and Y. Zhang, “Robust zeroing neural-dynamics and its
time-varying disturbances suppression model applied to mobile robot
manipulators,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9,
pp. 4385–4397, Sep. 2018.

[17] I. E. Schochetman, S. K. Tsui, and R. L. Smith, “Solution existence for
time-varying infinite horizon quadratic programming,” J. Math. Anal.
Appl., vol. 195, no. 1, pp. 135–147, 1995.

[18] P. Tsiotras, M. Corless, and M. Rotea, “Optimal control of rigid body
angular velocity with quadratic cost,” in Proc. IEEE Int. Conf. Decision
Control, vol. 2, Dec. 1996, pp. 1630–1635.

[19] Y. Zhang, S. Fu, Z. Zhang, L. Xiao, and X. Li, “On the LVI-based
numerical method (E47 algorithm) for solving quadratic programming
problems,” in Proc. IEEE Int. Conf. Autom. Logistics, Aug. 2011,
pp. 125–130.

[20] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Cooperative convex
optimization in networked systems: Augmented Lagrangian algorithms
with directed gossip communication,” IEEE Trans. Signal Process.,
vol. 59, no. 8, pp. 3889–3902, Aug. 2011.

[21] Y. Zhang, W. E. Leithead, and D. J. Leith, “Time-series Gaussian process
regression based on Toeplitz computation of O(N2) operations and
O(N)-level storage,” in Proc. IEEE Conf. Decision Control, Dec. 2005,
pp. 3711–3716.

[22] M. A. Gómez, “An O(n2) active set algorithm for solving two related box
constrained parametric quadratic programs,” Numer. Algorithms, vol. 27,
no. 4, pp. 367–375, 2001.

[23] J. Wang and Y. Xia, “A dual neural network solving quadratic program-
ming problems,” in Proc. Int. Joint Conf. Neural Netw., vol. 1, Jul. 1999,
pp. 588–593.

[24] Y. Xia and J. Wang, “Primal neural networks for solving convex
quadratic programs,” in Proc. Int. Joint Conf. Neural Netw., vol. 1,
Jul. 1999, pp. 582–587.

[25] Y. Zhang, D. Jiang, and J. Wang, “A recurrent neural network for solving
Sylvester equation with time-varying coefficients,” IEEE Trans. Neural
Netw., vol. 13, no. 5, pp. 1053–1063, Sep. 2002.

[26] Y. Zhang, J. Wang, and Y. Xu, “A dual neural network for bi-criteria
kinematic control of redundant manipulators,” IEEE Trans. Robot.
Autom., vol. 18, no. 6, pp. 923–931, Dec. 2002.

[27] Y. Zhang and J. Wang, “Obstacle avoidance for kinematically redundant
manipulators using a dual neural network,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 34, no. 1, pp. 752–759, Feb. 2004.

[28] Y. Leung, K.-Z. Chen, Y.-C. Jiao, X.-B. Gao, and K. S. Leung,
“A new gradient-based neural network for solving linear and quadratic
programming problems,” IEEE Trans. Neural Netw., vol. 12, no. 5,
pp. 1074–1083, Sep. 2001.

[29] D. Guo, C. Yi, and Y. Zhang, “Zhang neural network versus gradient-
based neural network for time-varying linear matrix equation solving,”
Neurocomputing, vol. 74, no. 17, pp. 3708–3712, 2011.

[30] Y. Zhang, C. Yi, and W. Ma, “Simulation and verification of zhang
neural network for online time-varying matrix inversion,” Simul. Model.
Pract. Theory, vol. 17, no. 10, pp. 1603–1617, 2009.

[31] K. Chen, S. Yue, and Y. Zhang, “MATLAB simulation and comparison
of Zhang neural network and gradient neural network for online solution
of linear time-varying matrix equation AX B−C = 0,” in Proc. Int. Conf.
Intell. Comput., 2008, pp. 68–75.

[32] X. Huang, X. Lou, and B. Cui, “A novel neural network for solving con-
vex quadratic programming problems subject to equality and inequality
constraints,” Neurocomputing, vol. 214, pp. 23–31, Nov. 2016.

[33] S. Qin and X. Xue, “A two-layer recurrent neural network for nonsmooth
convex optimization problems,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 6, pp. 1149–1160, Jun. 2015.

[34] J. Feng, S. Qin, F. Shi, and X. Zhao, “A recurrent neural network
with finite-time convergence for convex quadratic bilevel programming
problems,” Neural Comput. Appl., vol. 30, no. 11, pp. 3399–3408,
Dec. 2018.

[35] X. Le and J. Wang, “A two-time-scale neurodynamic approach to
constrained minimax optimization,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 3, pp. 620–629, Mar. 2017.

[36] X. Liu and T. Chen, “Global exponential stability for complex-valued
recurrent neural networks with asynchronous time delays,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 3, pp. 593–606, Mar. 2016.

[37] H. Zhang, Z. Wang, and D. Liu, “A comprehensive review of stability
analysis of continuous-time recurrent neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1229–1262, Jul. 2014.

[38] J. Y. Wang, L. Zhang, Q. Guo, and Z. Yi, “Recurrent neural networks
with auxiliary memory units,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 5, pp. 1652–1661, May 2018.

[39] Z. Yan and J. Wang, “Nonlinear model predictive control based on col-
lective Neurodynamic optimization,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 4, pp. 840–850, Apr. 2015.

[40] Y. Zhang and S. S. Ge, “Design and analysis of a general recurrent
neural network model for time-varying matrix inversion,” IEEE Trans.
Neural Netw., vol. 16, no. 6, pp. 1477–1490, Nov. 2005.

[41] L. Xiao, “A new design formula exploited for accelerating Zhang neural
network and its application to time-varying matrix inversion,” Theor.
Comput. Sci., vol. 647, pp. 50–58, Sep. 2016.

[42] Y. Zhang, W. Ma, and C. Yi, “The link between newton iteration for
matrix inversion and Zhang neural network (ZNN),” in Proc. IEEE Int.
Conf. Ind. Technol., Apr. 2008, pp. 1–6.

[43] L. Jin, Y. Zhang, S. Li, and Y. Zhang, “Modified ZNN for time-
varying quadratic programming with inherent tolerance to noises and its
application to kinematic redundancy resolution of robot manipulators,”
IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6978–6988, Nov. 2016.

[44] L. Xiao and Y. Zhang, “Zhang neural network versus gradient neural net-
work for solving time-varying linear inequalities,” IEEE Trans. Neural
Netw., vol. 22, no. 10, pp. 1676–1684, Oct. 2011.

[45] Y. Zhang and Z. Li, “Zhang neural network for online solution of time-
varying convex quadratic program subject to time-varying linear-equality
constraints,” Phys. Lett. A, vol. 373, nos. 18–19, pp. 1639–1643, 2009.

[46] Y. Zhang, G. Ruan, K. Li, and Y. Yang, “Robustness analysis of the
Zhang neural network for online time-varying quadratic optimization,”
J. Phys. A, Math. General, vol. 43, no. 24, pp. 202–245, 2010.

[47] Z. Zhang, L. Zheng, J. Weng, Y. Mao, W. Lu, and L. Xiao, “A new
varying-parameter recurrent neural-network for online solution of time-
varying Sylvester equation,” IEEE Trans. Cybern., vol. 48, no. 11,
pp. 3135–3148, Nov. 2018, doi: 10.1109/TCYB.2017.2760883.

[48] D. R. Glandorf, “Lagrange multipliers and the state transition matrix for
coasting arcs,” AIAA J., vol. 7, no. 2, pp. 363–365, 2015.

[49] S. Boyd, L. Vandenberghe, and L. Faybusovich, “Convex optimization,”
IEEE Trans. Autom. Control, vol. 51, no. 11, p. 1859, Nov. 2006.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCYB.2017.2760883


ZHANG et al.: POWER-TYPE VPNN FOR SOLVING TVQP PROBLEMS: DESIGN, ANALYSIS, AND APPLICATIONS 2433

[50] S. Li, H. Wang, and M. U. Rafique, “A novel recurrent neural network
for manipulator control with improved noise tolerance,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1908–1918, May 2018,
doi: 10.1109/TNNLS.2017.2672989.

[51] S. W. S. Tang and J. Wang, “A primal-dual neural network for kinematic
control of redundant manipulators subject to joint velocity constraints,”
in Proc. Int. Conf. Neural Inf. Process., vol. 2, Nov. 1999, pp. 801–806.

[52] Y. Zhang, X. Lv, Z. Li, and Z. Yang, “Repetitive motion planning of
redundant robots based on LVI-based primal-dual neural network and
puma 560 example,” in Proc. Int. Conf. Life Syst. Modeling Simulation,
2007, pp. 536–545.

[53] S. Li, J. He, Y. Li, and M. U. Rafique, “Distributed recurrent neural
networks for cooperative control of manipulators: A game-theoretic
perspective,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 2,
pp. 415–426, Feb. 2017.

[54] L. Jin, S. Li, H. M. La, and X. Luo, “Manipulability optimization of
redundant manipulators using dynamic neural networks,” IEEE Trans.
Ind. Electron., vol. 64, no. 6, pp. 4710–4720, Jun. 2017.

[55] L. Jin, S. Li, J. Yu, and J. He, “Robot manipulator control using neural
networks: A survey,” Neurocomputing, vol. 235, pp. 23–34, Apr. 2018.

[56] C.-F. Juang and Y.-T. Yeh, “Multiobjective evolution of biped robot gaits
using advanced continuous ant-colony optimized recurrent neural net-
works,” IEEE Trans. Cybern., vol. 48, no. 6, pp. 1910–1922, Jun. 2017.

[57] J. Craig, Introduction to Robotics: Mechanics and Control. New York,
NY, USA: Pearson Education, 1989.

[58] R. Kalman and J. Bertram, “Control system analysis and design via the
second method of Lyapunov: (I) continuous-time systems (II) discrete
time systems,” IEEE Trans. Autom. Control, vol. 4, no. 3, p. 112,
Dec. 2003.

[59] M. Hazewinkel, Advanced Multivariate Statistics With Matrices.
Dordrecht, The Netherlands: Springer, 2005.

[60] E. O. Roxin, “Ordinary differential equations,” Ordinary Differ. Equ.,
vol. 24, no. 3, pp. 82–122, 1972.

[61] S. Li and Y. Li, “Nonlinearly activated neural network for solving time-
varying complex Sylvester equation,” IEEE Trans. Cybern., vol. 44,
no. 8, pp. 1397–1407, Aug. 2014.

Zhijun Zhang (M’12) received the Ph.D. degree in
communication and information systems from Sun
Yat-sen University, Guangzhou, China, in 2012.

From 2013 to 2015, he was a Post-Doctoral
Research Fellow with the Institute for Media Innova-
tion, Nanyang Technological University, Singapore.
Since 2015, he has been an Associate Professor with
the School of Automation Science and Engineering,
South China University of Technology, Guangzhou,
where he is currently with the Human-Robot Intel-
ligence Lab, Center for Brain Computer Interfaces

and Brain Information Processing. His current research interests include neural
networks, automatic control, humanoid robots, and human–robot interaction.

Ling-Dong Kong (S’18) is currently pursuing the
B.Sc. degree in intelligence science and technol-
ogy with the School of Automation Science and
Engineering, South China University of Technology
(SCUT), Guangzhou, China.

He is currently with the Human-Robot Intelligence
Lab, Center for Brain Computer Interfaces and Brain
Information Processing, SCUT. His current research
interests include neural networks, machine learning,
and robotics.

Mr. Kong was a recipient of the National Scholar-
ship of the Year 2017–2018 awarded by the Ministry of Education of China.

Lunan Zheng (S’18) received the B.Eng. degree
in automation from the South China University of
Technology (SCUT), Guangzhou, China, in 2017,
where he is currently pursuing the M.Sc. degree in
pattern recognition and intelligence system with the
School of Automation Science and Engineering.

He is currently with the Human-Robot Intelligence
Lab, Center for Brain Computer Interfaces and Brain
Information Processing, SCUT. His current research
interests include neural networks, machine learning,
and robotics.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:42:12 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2017.2672989


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


