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Abstract— Collision between dual robot manipulators during
working process will lead to task failure and even robot damage.
To avoid mutual collision of dual robot manipulators while doing
collaboration tasks, a novel recurrent neural network (RNN)-
based mutual-collision-avoidance (MCA) scheme for solving the
motion planning problem of dual manipulators is proposed and
exploited. Because of the high accuracy and low computation
complexity, the linear variational inequality-based primal–dual
neural network is used to solve the proposed scheme. The
proposed scheme is applied to the collaboration trajectory
tracking and cup-stacking tasks, and shows its effectiveness
for avoiding collision between the dual robot manipulators.
Through network iteration and online learning, the dual robot
manipulators will learn the ability of MCA. Moreover, a line-
segment-based distance measure algorithm is proposed to calcu-
late the minimum distance between the dual manipulators. If the
computed minimum distance is less than the first safe-related
distance threshold, a speed brake operation is executed and
guarantees that the robot cannot exceed the second safe-related
distance threshold. Furthermore, the proposed MCA strategy
is formulated as a standard quadratic programming problem,
which is further solved by an RNN. Computer simulations and
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a real dual robot experiment further verify the effectiveness,
accuracy, and physical realizability of the RNN-based MCA
scheme when manipulators cooperatively execute the end-effector
tasks.

Index Terms— Collision avoidance, cooperative task, dual robot
manipulators, motion planning, quadratic programming (QP),
recurrent neural network (RNN).

I. INTRODUCTION

IN RECENT years, robot manipulators have been widely
studied and exploited in different fields, such as mind con-

trol [1], humanoid robots [2], and medical instrument [3], [4].
The reason why a robot manipulator can attract so many
attentions is that it is capable of carrying heavy objects, doing
repetitive and precise works, and working in severe environ-
ments. To meet complex requirements of desired tasks, more
flexible configurations and optional optimizations are needed.
Therefore, redundant robot manipulators equipped with more
degrees of freedom (termed DOFs) cater to the demands of
more complex tasks than the nonredundant robot manipula-
tors. With more DOFs, the robot manipulator can finish the
fundamental task ideally with better optional optimizations and
accomplish extra but necessary objectives, such as joint-limit
avoidance [5] and position posture control [6]. In addition,
dual robot manipulators are becoming more and more pop-
ular, because dual robot manipulators can finish cooperative
tasks [7], [8] such as working in an automated order-picking
system [9] and assisting elderly as well as disabled people to
get dressed [10].

However, some challenging problems always exist in the
fields of operating dual redundant robot manipulators:

1) Redundancy Resolution Problem: With more DOFs,
a fundamental problem of redundant manipulators,
i.e., inverse-kinematic problem, should be considered
first. Due to the nonlinearity of the forward kinematic
equation, it is quite difficult to generate the joint
trajectories to the desired path in real time. In addition,
there exist innumerable solutions to joint trajectories,
because the number of the DOFs is more than that
of the work space dimensions. A traditional way
to solve the fundamental problem and obtain a
specific minimum-norm solution is the pseudoinverse
method [11]. However, the pseudoinverse method
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has an obvious disadvantage that it will cost a lot of
time to compute the inverse of matrices. In addition,
the pseudoinverse method does not contain the
inequality constraint for solving the secondary subtasks.
Because of the advantages of parallel computation
and easy realization, recurrent neural network (RNN)
methods for solving the inverse-kinematic problem
have attracted numerous researchers’ and engineers’
interests [12]–[16]. Recently, quadratic programming
(termed QP)-based RNNs are widely studied for the
convenience of designing the extra optimal criteria
as the optimal objective and equality/inequality
constraints [15], [17]–[20]. The linear variational
inequality-based primal–dual neural network
(LVI-PDNN) [13] is a kind of QP-based RNN,
which can be applied to solve the inverse-kinematic
problems.

2) Collaboration Task Execution of Dual Robot Manipula-
tors: The dual redundant robot manipulators are usually
expected to finish the end-effector task cooperatively.
The method to control the dual robot manipulators
simultaneously should be considered. Zhang et al. [18]
show that an optimization-based method is feasible.

3) Real-Time Mutual-Collision-Avoidance (MCA) Algo-
rithm: When the dual robot manipulators are executing
an end-effector task, a problem that cannot be negligible
is the mutual-collision problem. Once the mutual colli-
sion happens, the robot manipulators will be forced to
deviate from the desired trajectories and this will also
lead to the task failure. Moreover, it may cause serious
damage to the vulnerable robot manipulators.

To avoid such a serious case, an MCA scheme (see Fig. 1)
is necessary. By retrieving the literatures, we find that there
is very few or even no scheme considering such a mutual-
collision problem. The MCA problem has the following advan-
tages: 1) MCA can avoid the collision of dual robots when
working cooperatively; 2) it is convenient to incorporate the
secondary optimal criteria into the proposed QP-based MCA
scheme; 3) MCA can reduce the needless sensors to measure
the position information of the robot manipulators, because
the precise models of the manipulators have been introduced
into the MCA scheme; 4) because all the robot formulations
and criteria have been taken into one scheme, some global
optimization criterion can be considered, e.g., minimizing the
global velocity norm and maximizing the global manipula-
bility; and 5) the MCA scheme can be extended to multiple
robots case.

Because of the above advantages, an MCA scheme is
proposed. It can solve the redundancy resolution problem,
control the dual manipulators to work simultaneously, and
avoid the mutual collision of dual robot manipulators. Due to
the effectiveness of the RNN method, an LVI-PDNN is used
to solve the QP-based MCA scheme. The main contributions
of this article are described as follows.

1) By converting the MCA problem to form the attrac-
tor of the LVI-PDNN and achieving neural network
online learning, a novel MCA scheme synthesized by

Fig. 1. Structure of an MCA scheme.

LVI-PDNN of dual redundant robot manipulators to
achieve cooperative work is proposed and discussed.

2) The theoretical joint angles of dual manipulators can be
solved by an LVI-PDNN-based MCA scheme and used
to achieve MCA. Through online learning, the manipu-
lators will obtain the ability of collision avoidance.

3) It is the first time to propose and incorporate the line-
segment-based distance measure (termed LSDM) into
the QP-based motion planning scheme. LSDM is an
iterative minimum-distance calculation method, which
obtains the accurate minimum distance between two line
segments. This method is different from the traditional
distance measurement of the obstacle-avoidance scheme,
which can only consider the distance between one line
segment and a point.

4) Simulations and comparisons verify the effectiveness,
accuracy, and safety of the proposed MCA scheme
when dual robot manipulators cooperatively execute an
end-effector task.

5) Experiment with real robots further validates the phys-
ical realizability and advantage of the proposed MCA
scheme.

The structure of the article is illustrated as follows.
Section II retrieves the related work. In Section III, a standard
QP problem is formulated to achieve the MCA of the dual
robot manipulators. Section IV shows the LVI-PDNN, which
is used to solve the QP problem. Section V presents the
comparisons between the proposed MCA scheme and some
state-of-the-art methods. In Section VI, simulations and
comparisons based on the dual PA10+ manipulators with
MATLAB and one real-robot experiment based on KINOVA
JACO2 and MICO2 are presented to verify the correctness
of the schemes. Furthermore, the MCA scheme is compared
with the some state-of-the-art methods. Finally, conclusions
are presented in Section VII.
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II. RELATED WORKS

To overcome the potential problem that the manipulators
and mobile robots may collide with the obstacles, schemes
need to figure out how to avoid collisions. In recent years,
many studies have been reported to avert the collisions from
happening. A significant step to avoid collisions is to measure
the minimum distance between the manipulators and the obsta-
cles. The calculated minimum distance is used to achieve real-
time and collision-avoidance control, so that the distance needs
to be computed quickly and accurately. Some researchers
calculated the distance with the relationship between two
straight lines in different planes [21]. However, such a method
will divide the distance calculation into ten cases and the
calculation is time-consuming. Thus, an algorithm to measure
the minimum distance between two line segments based on
the geometric knowledge is proposed, which can obtain the
results quickly.

Artificial potential field (APF) is an effective tool for robot
to avoid collision [22]–[24]. Khatib et al. [25] proposed a real-
time obstacle-avoidance method based on building an APF for
manipulators and mobile robots to achieve robot operations
in a complicated environment. Volpe et al. [26] presented a
superquadric-based potential function that can achieve avoid-
ance by generating repulsive forces from obstacles. Never-
theless, due to the inability of dealing with various shapes
of obstacles and the massive computation for the complex
situations with 3-D obstacles, these APF methods are more
suitable for mobile robots and nonredundant manipulators than
redundant manipulators.

Under such a situation, Zhang et al. [21] proposed a QP
problem-based scheme that is combined with the minimum
velocity norm, desired path tracking, as well as obstacle
avoidance and then solved the QP problem with an RNN. With
this scheme, it is able to avoid the massive computation burden
caused by the previous pseudoinverse method. In addition,
Guo et al. [27] improved the scheme by modifying some
parameters in the obstacle-avoidance constraint to decline
further the sudden saltation of velocities. Furthermore, some
effective collision-avoidance schemes have been proposed by
some researchers and engineers [28]–[30]. Sun et al. [28]
first presented a fast method for estimating the probability
of collision of a motion planner for a manipulator under
the assumptions of Gaussian motion and sensing uncertainty.
Oh et al. [29] proposed an analytic inverse kinematic solution
by considering the joint-limit and the self-collision avoidance
for a 7-DOF manipulator with a spherical shoulder and wrist
joints. However, the above studies only focused on the single
redundant manipulator.

In the studies from [31]–[35], they focused on the col-
lision between the manipulators and the external obstacles
without considering the mutual collision of the dual arms.
Wang et al. [34] proposed a self-identification and collision-
prediction method that can avoid the collision, even if the
obstacle is close to the robot and, at the same time, pre-
vent unnecessary robot movements when the obstacle is far
enough from the robot. Nicolis et al. [35] proposed a unified
real-time optimization controller for a visual-servo dual-arm
teleoperation system that allows robust collision avoidance in

cluttered environments. However, the above studies focused on
the obstacle collision-avoidance problems of dual manipulators
more than the MCA. Therefore, an MCA scheme is proposed
to meet the requirements of obtaining an optimal solution
that contains joint-limit avoidance, collision avoidance, and
finishing the end-effector task.

III. PROBLEM FORMULATION AND SCHEME DESIGN

First, an inverse-kinematic model and a minimum velocity
norm (MVN) formulation of dual redundant manipulators
are presented. Then, MCA constraints and joint constraints
are considered and integrated into QP problem for the
left-hand-side robot manipulator. After that, two QPs of
the left-hand-side and right-hand-side manipulators are
formulated, respectively. Finally, a combined standard QP
problem unified by the two QPs is proposed to achieve the
MCA of the dual manipulators.

A. Traditional Minimum Velocity Norm Scheme

The forward kinematic equation of the manipulators [18] is

fL/R(θL/R) = rL/R (1)

where θL/R ∈ R
n and rL/R ∈ R

m denote the joint angles
and desired end-effector paths of the left-hand-side and
right-hand-side robot manipulators, respectively, and fL/R(·)
is a continuous nonlinear mapping function. The forward
kinematic problem is to obtain rL/R when θL/R is known. On the
contrary, the inverse kinematic problem is to obtain the joint
space solutions while the desired end-effector path rL/R is
known. Due to the nonlinearity, it is difficult to obtain directly
the following solutions θL/R, that is:

θL/R = f −1
L/R(rL/R). (2)

A common way to solve the inverse kinematic problem
is to handle it at the velocity level [18]. By differentiating
the forward kinematic equation (1) with respect to time t ,
the following equation can be obtained, that is,

JL/Rθ̇L/R = ṙL/R (3)

where JL/R ∈ R
m×n denotes the end-effector Jacobin matrix

of the left-hand-side and right-hand-side robot manipula-
tors, which is defined as JL/R=∂ f (θL/R)/∂θL/R. The traditional
approach to solve (3) is the pseudoinverse method [11],
that is:

θ̇L/R = J †
L/RṙL/R + (I − J †

L/R JL/R)� (4)

where J †
L/R denotes the generalized inverse (or called pseudoin-

verse) of JL/R and I is a unit matrix. I − J †
L/R JL/R is the

projectional operator that projects arbitrary vectors � onto
the null space of JL/R. The term I − J †

L/R JL/R denotes the
general solution to the homogeneous equation JL/Rθ̇L/R = 0.
The traditional method (4) needs to compute the pseudoinverse
of the matrices, which is a time-consuming work. Recently,
many researchers prefer a QP-based method. For instance,
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Fig. 2. Inner and outer safety thresholds of a vulnerable robot manipulator.

an MVN scheme [27] of the left-hand-side and right-hand-
side robot manipulators is designed as

min
1

2
‖θ̇L/R‖2

2 (5)

s.t. JL/Rθ̇L/R = ṙL/R (6)

where ‖·‖2 stands for the Euclidean norm.

B. Collision-Avoidance Constraint

For simplicity, we take the left-hand-side robot manipulator
as an example to present the collision avoidance in detail and
then directly give the result of the right one due to space
limitation.

As is shown in Fig. 2, assume that there are three obstacles
near a vulnerable robot manipulator. In the algorithms, two
safety thresholds are applied, i.e., inner safety threshold d1

and outer safety threshold d2, and there are three cases.

1) If the minimum value between one obstacle (like obsta-
cle 1) and the vulnerable manipulator is larger than
d2, it means that the robot would not collide with the
obstacle and is safe.

2) If the minimum value is between d1 and d2 (like
obstacle 2), it means that the manipulator is easy to
collide with the obstacle, and the robot should decelerate
toward or keep off obstacle 2. Therefore, an escape
velocity of the critical point P on the manipulator needs
to be assigned. When the dual manipulators are working
cooperatively, one manipulator needs to be treated as the
obstacle versus the other manipulator. Thus, the escape
velocity is designed for the vulnerable link to drive away
from the critical point on the other manipulator.

3) If the minimum distance is less than the safety threshold
d1 (like obstacle 3), it means that the manipulator has
already collided with the obstacle, and we need to avoid
this before the minimum distance decreases to the value
less than d1.

A key step to achieve MCA is to treat one of the dual manip-
ulators as an obstacle and measure the minimum distance
between the dual manipulators accurately. A novel LSDM at
geometric level is proposed and illustrated as follows.

Fig. 3. Different situations between point O and line AB. (a) H on the
left-hand side. (b) H on the line segment. (c) H on the right-hand side.

Step 1: Assume there is a point O outside line segment
−→
AB,

as shown in Fig. 3. Point H is the intersection point on the
perpendicular line through Point O of the line

−→
AB.

Since the minimum distance |−→OP| and the location of point
P are the key factors in the algorithm, they should be first
considered and calculated. From Fig. 3(b), we know that

−→
OH2 = −→

OA2 − −→
AH2 = −→

OB2 − −→
HB2 (7)−→

AH = −→
AB − −→

HB. (8)

Substituting (8) into (7), we can obtain

−→
OA2 − (

−→
AB − −→

HB)2 = −→
OB2 − −→

HB2 (9)

and then
−→
HB = (

−→
OB2 + −→

AB2 − −→
OA2)/(2

−→
AB). Based on the

different locations of point H, the following three cases are
considered.

1) If point H locates on the left-hand side of the line
segment

−→
AB, i.e.,

−→
HB >

−→
AB, the minimum distance from

point O to line segment
−→
AB is

−→
OA and the critical point

P is point A.
2) If point H locates on the line segment

−→
AB, i.e., 0 �−→

HB � −→
AB, the minimum distance from point O to line

segment
−→
AB is

−→
OH and the critical point P is point H.

3) If point H locates on the right-hand-side of line segment−→
AB, i.e.,

−→
HB < 0, the minimum distance from point O

to line segment
−→
AB is

−→
OB and the critical point P is

point B.

Step 2: For the left-hand-side manipulator, we define one
link vector

−→
AB as

−→
AB = [x−→

AB, y−→
AB, z−→

AB]. Similarly, for the

right-hand-side manipulator, we define one link vector
−→
CD as−→

CD = [x−→
CD, y−→

CD, z−→
CD].

Step 3: In order to find the minimum distance between two
line segments (such as line segment

−→
AB and

−→
CD in Fig. 4),

the main idea of the LSDM is presented.
First, select B as the initial point and then calculate the

minimum distance from point B to
−→
CD with the method illus-

trated in Step 1. After this, as shown in Fig. 4, the location of
the corresponding point H1 on

−→
CD and the minimum distance

between point B to
−→
CD are simultaneously determined.

Then, take the critical point H1 as another initial point and
apply the method again to locate the corresponding critical
point H2 on

−→
AB. In addition, the updated temporary minimum

distance between
−→
AB and

−→
CD is simultaneously obtained.

Third, apply the aforementioned method iteratively until
the minimum distance stops declining. We consider the latest
updated value as the minimum distance between

−→
AB and

−→
CD.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 17,2020 at 14:46:52 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: MCA SCHEME SYNTHESIZED BY NEURAL NETWORKS 5

Fig. 4. Minimum distance calculation. (a) Two segments are coplanar. (b) HAB is within . (c) HAB is on the extension line of . (d) Minimum
distance between two manipulators.

Theorem 1: Assume that A, B, C, and D are the end points,
and P and E are the critical points of the two line segments

−→
AB

and
−→
CD. If the LSDM method is used, the minimum distance

d is found when d = dMin1 = dMin2, where dMin1 denotes the
minimum distance between point P on

−→
AB and line segment−→

CD, and dMin2 denotes the minimum distance between point
E on

−→
CD and line segment

−→
AB.

Proof: According to the spatial location relation between
the dual robot manipulators, two cases should be considered.

1) When two segments are coplanar, which is shown
in Fig. 4(a). Without loss of generality, taking point B
on line

−→
AB as the initial point, we can create a line

perpendicular to
−→
CD, and the intersection is H1. From

point D, we take a line perpendicular to
−→
AB, and the

intersection is H2. We can get a right-angled triangle
with three sides, i.e., BD, DH2, and H2D. Similarly,
from point H2, we can create next right-angled triangle,
and the iterative process will stop until the minimum
distance dMin1 between point P on

−→
AB to line

−→
CD is

equal to the minimum distance dMin2 from H13 to
−→
AB.

It means that there is no smaller right-angled triangle
with the minimum distance |PE| as the hypotenuse any
more. Therefore, |PE| is the minimum distance between
the line segments

−→
AB and

−→
CD.

2) Consider lines
−→
AB and

−→
CD in different noncoplanar

planes. For calculating the minimum |PE|, the normal
vector �v of

−→
AB and

−→
CD is used. Move

−→
CD along the

direction of �v to intersect line
−→
AB with intersection HAB

(i.e., line
−−→
C′D′ ). The corresponding point in

−→
CD is HCD.

Then, two situations should be considered.

A) If HAB is within
−−→
C′D′: In Fig. 4(b),

−−→
C′D′ is parallel

to
−→
CD. Moreover, lines

−−→
C′D′ and

−→
AB form a plane

P and
−→
PE is a vertical line perpendicular to plane

P . That is, |PE| is the minimum distance between−→
AB and

−→
CD. Similar to the coplanar situation, tak-

ing B as the initial point, create a line perpendicular
to

−→
CD with intersection H1. Furthermore, a line−−→

F1H1, which is parallel to
−→
PE and perpendicular to−→

CD, can be found. That is,
−→
CD is perpendicular to

plane BH1F1 and � H1F1B= 90◦. Similarly, taking
H1 as the initial point, create a line perpendicular to−→
AB with intersection H2. Then,

−→
AB is perpendicu-

lar to plane H1H2F1 and � H1F1H2 = 90◦. Since

� F1H2B= 90◦, according to triangle inequality,
we have |BF1| > |F1H1|. It implies that dMin1 =
|BH1| > |H1H2| = dMin2. Repeating the above
steps, through gradual iteration, dMin1 and dMin2

will converge toward |PE|, i.e., the target minimum
d = |PE| = dMin1 = dMin2 will be obtained finally
through iteration. It is worth pointing out that if
the footpoint Hi is on the extension line of

−→
CD

[such as H1 in Fig. 4(c)], then, the next starting
point will be set as the end point of

−→
CD [such as

D in Fig. 4(c)].
B) If HAB is on the extension line of

−−→
C′D′: Take

Fig. 4(c) as an example. Similar to the steps in
(1), a series of points Hi will be found. Repeating
the iteration steps in (1), the final starting point is
C (i.e., point E) and the minimum distance is CP,
where point P is the footpoint at line

−→
AB. Thus,

the target minimum |PE| will be obtained.

To achieve the LSDM algorithm of the MCA scheme,
the minimum distances are computed by the following
progress. Take Fig. 4(d) as an example, where Li and Ri are
the links of two manipulators and Di are the distances from
R2 to each link of the left-hand-side manipulator. First, for
each link (e.g., link R2) of a manipulator, minimum distances
between this link and all the links of another manipulator (e.g.,
D1 ∼D4) are calculated. Second, we choose the smallest value
of the minimum distances from link R2 to the left-hand-side
manipulator as the global minimum value of R2. For example,
D2 (the minimum distance from R2 to L2, or from R2 to L3)
is the smallest among D1 ∼D4. Third, the collision-avoidance
constraints of all the global minimum values of each link and
their critical points are incorporated into the QP-based MCA
scheme.

Without loss of generality, considering line segment AB
as the first link of the left-hand-side manipulator and CD
as the obstacle (i.e., one of the links of the right-hand-
side manipulator), the collision-avoidance constraint of critical
point P1 can be formulated as

−−→rP1E1 
 JP1Lθ̇L � 0 ∈ R
m (10)

where 0 denotes the full-zero column vector; −−→rP1E1 = [xE1 −
xP1 , yE1 − yP1 , zE1 −zP1]T with (xP1 , yP1 , zP1) and (xE1 , yE1 , yE1)
denoting locations of the critical points P1 and E1 in Carte-
sian space, respectively; operator 
 is defined as ι 
 χ =
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[ι1χ1, ι2χ2, . . . , ιuχu]T with ι := [ι1, ι2, . . . , ιu] ∈ R
u as a

column vector, and χ := [χ1, χ2, . . . , χu]T ∈ R
u×i as a matrix,

where χi denotes the i row of the matrix χ ; JP1L ∈ R
m×n

denotes the Jacobian matrix of the critical points on the robot
manipulator. In this article, since the robot has 8-DOFs, and
the robot works in three-dimensional space, n = 8 and m = 3.

As for all the critical points P1 ∼ Pσ , the overall collision-
avoidance constraint is

−→rPE 
 JPLθ̇L � 0 ∈ R
σm (11)

where −→rPE = [−−→rP1E1
T, . . . ,−−→rPσEσ

T]T ∈ R
σm and JPL =

[JP1L, . . . , JPσL]T ∈ R
σm×n. Symbol σ stands for the number

of the critical points on the left-hand-side vulnerable robot
manipulator.

To decrease the suddenly saltation of the position and
velocity of the end-effector when the manipulator moves close
enough to the obstacle, the vector 0 in (11) should be replaced
by a gradually changing variable parameter BL

BL = S(d)max{−→rPE 
 JPLθ̇L|d=d2 , 0} (12)

S(d) =

⎧⎪⎪⎨
⎪⎪⎩

1, if d � d2

sin2

(
π

2
· d − d1

d2 − d1

)
, if d1 < d < d2

0, if d � d1

(13)

where d1 and d2 denote the inner and outer safety thresholds.
Therefore, inequality (11) can be simply replaced by

JNLθ̇L ≤ BL (14)

and the QP problem (5) and (6) of the left-hand-side manip-
ulator becomes

min
1

2
‖θ̇L‖2

2 (15)

s.t. JLθ̇L = ṙL (16)

JNLθ̇L ≤ BL (17)

where JNL = −→rPE 
 JPL is the diamond multiplication result
between −→rPE and the Jacobin matrix JPL.

When the minimum distance between the dual manipulators
is more than d2, i.e., the dual robot manipulators work in
the safe situation, the dual manipulators will work normally.
When the minimum distance is larger than d1 and less than
d2, if the dual manipulators are moving closer, their relative
speed will decrease to zero, even to a negative value; if the
dual manipulators are moving in opposite directions, their
relative speed would track their original directions with the
same speed. When the minimum distance is getting close
enough to d1, inequality (17) can ensure that the left-hand-
side manipulator stops moving toward the right-hand-side one
to avoid collision.

C. Joint-Limit-Avoidance Constraint

In practical applications, it is necessary to consider the joint
limits of a robot. The joint limits can be described as

θ−
L � θL � θ+

L , θ̇−
L � θ̇L � θ̇+

L (18)

where θ±
L and θ̇±

L denote the upper and lower limits of the
joints angles and velocities of the left-hand-side manipulator,
respectively.

Since the inverse kinematic problem is solved at the velocity
level [18], [27], [36], the joint angle variable needs to be
represented by the joint velocities, that is,

ε−
L = ε

(
θ−

L − θL
)

� θ̇L � ε
(
θ+

L − θL
) = ε+

L (19)

where ε is a parameter based on the structure of the manipu-
lator. Considering (18) and (19), the bound constraint is

η−
L = max

{
ε−

L , θ̇
−
L

}
� θ̇L � min

{
ε+

L , θ̇
+
L

} = η+
L . (20)

D. MCA Schemes of Left-Hand-Side and Right-Hand-Side
Manipulators

Considering the mutual avoidance, joint-limit avoidance and
optimization, and end-effector path tracking, the QP-based
schemes of the left-hand-side and right-hand-side manipulators
are formulated as

min
1

2
θ̇T

L/Rθ̇L/R (21)

s.t. JL/Rθ̇L/R = ṙL/R (22)

JNL/Rθ̇L/R � BL/R (23)

η−
L/R � θ̇L/R � η+

L/R. (24)

Therefore, the requirements of accomplishing the
end-effector task and MCA of the left-hand-side and
right-hand-side manipulators have been transferred
into (21)–(24).

In addition, since the spatial position relation of the dual
manipulators changes all the time, the minimum distances
between them need to be measured at each instant in real time.
After that, we can obtain the matrices JNL, JNR and vectors
BL,BR, which constitute (23). Moreover, other decision vari-
ables and the coefficient matrices JL, JR, rL, rR, η

−
L , η

+
L , η

−
R ,

and η+
R can be obtained from the trajectories of the end-

effectors and the joint angular limits of the manipulators.
When (21)–(24) are solved, it means that the dual manipu-

lators can finish the end-effector task while accomplishing the
subtasks including the MCA.

E. Overall Mutual-Collision-Avoidance Scheme

To formulate further a standard QP problem to adapt to the
format of the QP solver, the QP problems (21)–(24) need to
be integrated as the following MCA scheme:

min
1

2
φTφ (25)

s.t. Gφ = α (26)

φ− � φ � φ+ (27)

Uφ � β (28)

where the variables, matrices, and vectors are defined as
φ = [θ̇L, θ̇R]T ∈ R

2n , α = [ṙL, ṙR]T ∈ R
2m , β = [BL,BR]T ∈

R
2σm , G = [JL, 0; 0, JR] ∈ R

2m×2n , U = [JNL, 0; 0, JNR] ∈
R

2σm×2n , φ− = [η−
L , η

−
R ]T ∈ R

2n , and φ+ = [η+
L , η

+
R ]T ∈ R

2n .
The MCA scheme (25)–(28) would degrade to tractional

MVN scheme with (25)–(27). Next, what we need to do is to
find a method to solve the unified standard QP problem.
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IV. NEURAL NETWORK SOLUTION

According to the previous study [36], the QP
problem (25)–(28) can be converted into linear variational
inequalities, which is further converted into piecewise linear
projection equations

P�(Y − (MY + q))− Y = 0 (29)

where P�(·) is a piecewise linear projection operator with

P�(Yi ) =

⎧⎪⎨
⎪⎩
Y−

i , if Yi < Y−
i

Yi , if Y−
i � Yi � Y+

i

Y+
i , if Yi > Y+

i

(30)

where Y = [φ, νe, νi ]T ∈ R
h is the primal–dual decision

vector, h = 2n + 2m + 2σm, φ ∈ R
2n is the joint angles

of the manipulators, and νe ∈ R
2m and νi ∈ R

2σm are the dual
decision vectors for constraints (26) and (28), respectively.
In addition, the convex set � is defined as

� = {Y ∈ R
h |Y− � Y � Y+} (31)

where Y− = [φ−,−� · 1v , 0 · 1u] and Y+ = [φ+,� ·
1v ,� · 1u] with � denoting a huge number that can replace
the +∞ numerically. 1v = [1, 1, . . . , 1]T ∈ R

2m and 1u =
[1, 1, . . . , 1]T ∈ R

2σm . In addition, M ∈ R
h×h and q ∈ R

h are
defined as

M =
⎡
⎣ I − GT U T

G 0 0
−U 0 0

⎤
⎦, and q =

⎡
⎣ τ

−α
β

⎤
⎦

where τ ∈ R
2n×1 is a zero matrix. Other vectors and matrices

are defined in Section III.
Then, the PLPE problem can be solved by the LVI-PDNN

Ẏ = λ(I + MT)(P�(Y − (MY + q))− Y) (32)

where λ is a parameter related to the convergence rate.
Remark 1: LVI-PDNN is a kind of RNN originating from

the Hopfield neural network. Through designing the attractor
and the dynamic system, this kind of RNN has associative
memory ability. The target of this kind of neural network
is to actuate the neural output from the initial position to a
target position and achieve network learning. Through network
iteration, the network output will converge to the theoretical
state and find the optimal solution. Then, the robot will obtain
the design abilities (e.g., collision avoidance).

Take the motion planning problem in this article as an
example. The target of the task is to find a time-varying
joint-angle series signal, which can solve the mutual-collision
problem, i.e., to find the theoretical solution to (29). Then,
setting the solution of (32) as the attractor, the LVI-PDNN
(32) will be built. Through online training, the LVI-PDNN is
stable and the output will converge to the theoretical solution.
Furthermore, both the solution Y and the weight matrix M
will converge to the theoretical joint-angle series signal and
the target time-varying weight matrix, respectively. Finally,
the solution Y can achieve the MCA.

To illustrate the RNN clearly, the standard RNN form of
the LVI-PDNN is written as follows.

Fig. 5. Block diagram realization of the LVI-PDNN-based MCA scheme.

Consider the general equations of the RNN{
st = F1(W1 st−1 + W2xt−1) (33)

ot = F2(W3 st + W4xt−1) (34)

where st is the state of the hidden neural layer at time t , ot

is the output of the RNN at time t , and xt is the input of
the RNN at time t . W1 ∼ W4 represent the weights of the
RNN. Considering the differential of (33), the above general
equations (33) and (34) can be rewritten as{

ρṡt = st+1 − st = F1(W1 st + W2xt )− st (35)

ot = F2(W3 st + W4xt−1) (36)

where ρ is a proportion matrix. If the weights are defined as
W1 = (I − M), W2 = I , W3 = I , and W4 = 0 as well as
st = Y , xt = q , and ρ = 1/λ(I + MT), the general RNN
equations (35) and (36) with F1(·) = P�(·) and F2(a) = a
can be rewritten as{ Ẏ = λ(I + MT)(P�(Y − (MY + q))− Y) (37)

ot = Y (38)

that is, the LVI-PDNN satisfied the general equation of the
RNN.

The block diagram realization of the LVI-PDNN (32) is
presented in Fig. 5. Through splitting the matrix equation of
the LVI-PDNN, the i th neuron (i = 1, . . . , k) equation of the
LVI-PDNN can be rewritten as

Ẏi = λ

h∑
j=1

ζi j

(
p j

(
h∑

k=1

ψ jkYk + q j

)
− Y j

)
(39)

where Yi is the i th element of Y , q j is the j th element of q ,
ζi j denotes the (i, j)th element of (I + MT), ψi j denotes the
(i, j)th element of (I −MT), and pi(·) is the i th subfunction of
P�(·). Thus, according to (39), a more detailed neural network
architecture of the LVI-PDNN is shown in Fig. 6. In Fig. 6,
neurons A1 ∼ Ah , B1 ∼ Bh , and C1 ∼ Ch are the intermediate
neurons of the LVI-PDNN.

As for the LVI-PDNN, because of P�(·), the bound con-
straint (27) can be removed, and the dimension of the
LVI-PDNN (h) is equal to the sum of the dimensions of
the primal–dual decision vector, the equality constraint, and
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Fig. 6. Network architecture of the LVI-PDNN-based MCA scheme.

the inequality constraint of the QP problem (25)–(28) (i.e.,
h = 2n + 2m + 2σm). As for practical realization, this
continuous LVI-PDNN can be realized by using the electronic
circles. Moreover, activation function P�(·) can be imple-
mented by using a limiter. Based on (39), the complexity of the
scale of the network circuits is that it consists of h integrators,
h limiters, 2h2 + h multipliers, and 2h2 summers. According
to [37], the structural and computational complexities of the
LVI-PDNN are at least half reduced compared with the dual
neural network method.

A graphical illustration including all the steps of the MCA
scheme is presented in Fig. 7. The overall design process of
the MCA scheme is presented as follows.

Step 1: According to the control task requirements and
the practical robot manipulators, the trajectories of the end-
effectors and the types of manipulators are determined.

Step 2: Based on the trajectories and types of manipulators,
the mathematical model of the whole scenario is established.

Step 3: The optimization objective (minimum energy,
repetitive motion, and so on), domain of definition (joints
limitation), equality (control task equation), and inequality
constraints (collision avoidance) for achieving control task are
chosen.

Step 4: Put all the elements in Step 3 into a QP problem
[see (25)–(28)].

Step 5: According to the design formula of LVI-PDNN (32),
the RNN for solving the QP problem in Step 4 is formed.

Step 6: Through the LVI-PDNN in Step 5, a series of joint
angles is solved. Then, put them into the practical system for
achieving the practical control task.

V. COMPARED WITH THE STATE-OF-THE-ART METHODS

A. Distance Calculation

To illustrate the advantages and disadvantages of the LSDM
method, a different plane straight line (DPSL) method [21]
is used for comparison. Since both the methods can achieve
collision avoidance, comparison criteria change from task
realization to calculation error, runtime, and code complexity.

1) Calculation Error: Since the DPSL makes full use of the
position relationship between two straight lines in different
planes, the error between the calculation result and the real
distance is relatively smaller than LSDM. LSDM is an iteration
method, and the calculation will stop if the stopping criteria
(e.g., the difference between two adjacent minimum distances
is smaller than 10−5 m) have been satisfied.

2) Runtime: According to [21] and [38], DPSL should
calculate the parameters by using the inversion of matrix.
Furthermore, ten situations should be considered and some of
them demand to recompute the footpoint for achieving further
control. These procedures are time-consuming. Correspond-
ingly, the LSDM changes the straight lines in different plane
problems to a point-to-line problem. Although the LSDM
should iterate many times, it needs less runtime in most cases.

3) Code Complexity: The programming of the DPSL is
more complicated than the LSDM due to the consideration of
the difference position relationship between the straight lines
in different planes. However, the LSDM makes full use of the
point-to-line situation and the programming is clearer. Each
iteration procedure can call the same function implementation.

B. Mutual-Collision-Avoidance Scheme

1) Compared With MVN Scheme: Actually, MVN do not
consider the collision avoidance between the dual manuscripts.
When facing the collision-avoidance problem, MVN is not
effective enough.

2) Compared With Artificial Potential Field: Comparisons
between the MCA scheme and the APF method [22]–[24] for
controlling the robot manipulators are presented.

1) Attractive Velocity: According to the APF method [22],
we define the attractive velocity based on the target position

VP = δP

−−−→
PEPG

‖−−−→
PEPG‖2

(40)

with δP = KPeP + DPėP and eP = ‖−−−→
PEPG‖2, where KP and

DP are the control parameters in the position layer, and PG

and PE are the target and end-effecter points in the Cartesian
coordinates.

Since the target point of the end-effecter is time-varying, for
realizing more accurate tracking control, the attractive velocity
based on the target velocity is defined as

VV = δV
SG − SE

‖SG − SE‖2
(41)

with δV = KVeV + DVėV and eV = ‖SG −SE‖2, where SG is
the target velocity, SE is the velocity of the end-effecter, and
KV and DV are the control parameters in the velocity layer.

The resultant attractive velocity is the weighted sum of the
attractive velocities in the position and velocity layers

VAtt = �VP + (1 − �)VV (42)

where 0 ≤ � ≤ 1 is a positive weighted parameter.
2) Repulsive Velocity: According to the APF design

method [22], we can define the following repulsive velocity
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Fig. 7. Graphical illustration including all the steps of the MCA scheme.

function:

VRep = δRep

−−−→
POPR

‖−−−→
POPR‖2

with δRep = vRep-max

1 + exp
(

2dminϑ
d

) (43)

where PO and PR are the obstacle and critical points in
the Cartesian coordinates, vRep-max is the maximum repulsive
velocity that the manipulator can create, ϑ is a factor for
adjusting the changing rate of the repulsive velocity, and dmin

is the minimum distance between the manipulator and the
obstacle.

3) Resultant Velocity: VAtt is constructed from the end-
effector and the VRep is constructed from the critical point.
These velocities cannot be synthesized to one velocity in the
Cartesian space. Therefore, through inverse kinematics of the
manipulator, we map VAtt and VRep to the joint-angle space

θ̇Att = J †(PE)VAtt (44)

Q̇Rep =
n∑

i=1

J †(P
(i)
R )V (i)Rep (45)

where J †(PE) is the pseudoinverse of the Jacobian matrix
J (PE), and J †(P

(i)
R ) and V (i)Rep are the pseudoinverse of the

Jacobian matrix and repulsive velocity from the i th obstacle.
The resultant joint-angle velocity is

θ̇ = θ̇Att + Q̇Rep. (46)

Thus, the joint angle θ of the robot manipulator is solved.
However, when collision avoidance is considered, the accu-

racy of the manipulator when using the APF method will
decrease. The reason why the accuracy reduces is that the
repulsive velocity mapping to the joint-angle space (Q̇Rep) may
conflict to the attractive velocity mapping to joint-angle space
(θ̇Att). θ̇Att and Q̇Rep are simply added in the joint-angle space.
Although θAtt is the solution to (44) and θRep is the solution
to (45), θ is not the solution that satisfied both (44) and (45).

As for the MCA scheme, the inverse kinematics of the
manipulators and the collision-avoidance constraint are con-
sidered as the constraint conditions of a QP problem. MCA
scheme is to find a solution to the QP problem in the feasible
solution space satisfying all the constraint conditions.

VI. SIMULATIONS AND REAL ROBOT EXPERIMENT

In this section, dual manipulators (i.e., two PA10+) are con-
ducted to verify the correctness of the MCA scheme (25)–(28).
PA10+ is a manipulator equipped with a long tool of 1-DOF
based on the PA10 robot arm of 7-DOFs. Thus, the DOF
of a PA10+ is 8, and the dimension of the end-effector
in the Cartesian space is 3. Moreover, the parameter λ in
LVI-PDNN (32) is set to 1 × 105. The desired paths of the
dual manipulators are tracking two cross circles or a Chinese
character “Hui,” which means “Go home.” The simulations
are performed with MATLAB 2016a on an Asus Z170-AR
with an Intel Core i7-6700K CPU at 4.00 GHz with 32 GB
of 2400-MHz RAM.

In addition, in the real robot experiment, we use KINOVA
JACO2 and MICO2 with 6-DOFs, which have some differences
in shape. Furthermore, JACO2 and MICO2 are controlled by
a VS2013 program by using the API provided by KINOVA
company, and the hybrid programming with the M language
of MATLAB and C language of VS2013 is built.

The applications of the RNN-based MCA scheme are the
collaboration trajectory tracking and cup-stacking tasks in
Sections VI-A–VI-E. These two applications are common
tasks for robot manipulators, and they show the effectiveness
of the MCA scheme for controlling the dual robot manipu-
lators to avoid collision with each other. The collaboration
trajectory tracking task is an important kind of applications to
robot manipulators in many fields, such as painting, welding,
and engraving. The collaboration stacking task is usually
used in carrying and assembling in human daily life. As for
some complex collaboration works, usage of the dual robot
manipulators is necessary and avoiding mutual collision is
usually a significant step. Thus, the MCA scheme is applied
to the trajectory tracking and cup-stacking tasks for verifying
its practicability.

A. Simulation of Drawing Cross Circles
The MCA scheme is performed on dual PA10+ to draw the

cross circles of radius 0.2 m and the slope angle π/3 referred
to as the xy plane. We initialize the joint angles of dual
PA10+ as θL0 = [0, π/4, 0,−π/2, 0, π/4, 0, π/4]Trad and
θR0 = [−π/2,−π/4, 0, π/2, 0,−π/4, 0,−π/4]Trad, respec-
tively. The task-execution period T is 10 s. The safety thresh-
olds d1 and d2 are set to 0.05 and 0.12 m, respectively.
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Fig. 8. Comparisons of trajectories synthesized by (a) MVN scheme
(25)–(27) and (b) MCA scheme (25)–(28) of the dual manipulators.

Fig. 9. Comparisons of the position of PA10+ at 8.2 s synthesized by
(a) MVN scheme (25)–(27) and (b) MCA scheme (25)–(28) of the dual
manipulators.

TABLE I

COMPARISONS OF MINIMUM DISTANCE BETWEEN DUAL

MANIPULATORS OF SAMPLING INSTANTS SYNTHESIZED
BY THE MVN AND MCA SCHEMES

According to the physical parameters of the manipulators,
the initial joint-angle state, and the equation of the target
tracking trajectory, the weight matrix M and the bias vector q
in (32) can be formed. Substituting M , q , and the initial values
into (32) and programming the LVI-PDNN in MATLAB by
M language, a series of joint angles will be obtained. These
time-series signals are the theoretical joint angles for the dual
robot manipulators for completing the collaboration tasks.
Then, substituting these signals into the robot manipulators,
the overall simulation is complete.

First, the trajectories synthesized by the MVN
scheme (25)–(27) and the MCA scheme (25)–(28) of
dual PA10+ are shown in Fig. 8. From Fig. 8(a), two PA10+
would collide if the MCA constraint is not considered, which
may lead to task failure and even robot damage. Evidently,
this situation is not expected in practical applications.
Contrastively, after applying the MCA scheme (25)–(28), two
manipulators keep a proper distance during the task execution
period, as shown in Fig. 8(b).

Second, Fig. 9(a) shows the distance d at time instant
8.2 s between dual PA10+ before applying the MCA scheme.

Fig. 10. Comparisons of minimum distance between dual PA10+ synthesized
by (a) MVN scheme (25)–(27) and (b) MCA scheme (25)–(28).

Fig. 11. Position errors synthesized by the MCA scheme (25)–(28). Position
errors of (a) left and (b) right manipulators.

The result ((0.292 − 0.2332)2 + (0.055 − 0.025)2 + (0.392 −
0.384)2)1/2 = 0.03744 m values less than d1, which means that
the collision has happened. Contrastively, the distance d after
applying the MCA scheme shown in Fig. 8(b) is ((0.147 −
0.250)2 + (0.0363 + 0.0193)2 + (0.424 − 0.409)2)1/2 =
0.11765 m, whose values are bigger than d1. In addition,
the minimum distance between dual PA10+ during the task-
execution period is shown in Fig. 10. The minimum dis-
tance between the dual PA10+ synthesized by the MVN
scheme (25)–(27) becomes less than d1 after 7.2 s, as shown
in Fig. 10(a), which means that the collision has happened.
Conversely, the result of the MCA scheme (25)–(28) is much
optimistic, as shown in Fig. 10(b) that the distance is larger
than d1. That is to say, the dual manipulators succeed in avoid-
ing mutual collision. In addition, Table I shows the specific
numerical comparisons of the minimum distances between
dual PA10+ at time instant 0 s, 2 s, 4 s, . . . , 10 s. From Table I,
the minimum distance between dual PA10+ synthesized by the
MVN scheme values is less than 0.05 m (d1), but the result
synthesized by the MCA scheme has a tendency of increasing
in the first few seconds and then keeps a safety distance. The
results further illustrate the effectiveness and advantage of the
MCA scheme in solving the mutual-collision problem.

Third, the end-effector position error of the dual manipu-
lators synthesized by the MCA scheme (25)–(28) is shown
in Fig. 11. The error keeps within a small range of 10−5 m,
and thus, it can ensure the accuracy while executing the
cooperative tasks. This guarantees the effectiveness of the
MCA scheme when apply it to track the trajectories accurately
while achieving MCA.

B. Simulation of Writing East Asian Word “Hui”

To illustrate further the effectiveness and wide extendibility,
the MCA scheme is performed on dual PA10+ to track word
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Fig. 12. (a) Chinese character “Hui.” (b) Target trajectory.

Fig. 13. Comparisons of the trajectories synthesized by (a) MVN scheme
(25)–(27) and (b) MCA scheme (25)–(28) of dual PA10+.

TABLE II

COMPARISONS OF MINIMUM DISTANCE BETWEEN DUAL
MANIPULATORS OF SAMPLING INSTANTS SYNTHESIZED

BY THE MVN AND MCA SCHEMES

“Hui” collaboratively and the initial state of the joint angles is
set similar to the previous experiment. In addition, d1 and d2

are set as 0.05 and 0.10 m, respectively. The picture of “Hui”
is presented in Fig. 12(a). Furthermore, the target trajectories
of the manipulators are presented in Fig. 12(b).

Fig. 13 shows different trajectories synthesized by the
MVN and MCA schemes of dual PA10+, respectively. When
the MCA constraint is not considered, from Fig. 13(a), two
manipulators would collide. On the contrary, the dual PA10+
succeed in avoiding mutual collision while executing the task
after applying the MCA scheme, as shown in Fig. 13(b).
In addition, the minimum distance during the task execution
process is shown in Fig. 14(a), from which we can see that
it keeps larger than d1. That is to say, the dual PA10+ are
able to execute the tasks safely. In addition, Table II shows
the minimum distances between dual PA10+ at time instants
0 s, 20 s, . . . , 80 s. From Table II, the minimum distance
synthesized by the MCA scheme keeps larger than d1, and
thus, it succeeds in avoiding collision. Last but not least,
the tiny position error of the right-hand-side robot manipulator
shown in Fig. 14(b) keeps in the range of 10−5 m, which can
ensure the accuracy of tracking the desired path.

Fig. 14. (a) Minimum distance and (b) position error of the MCA scheme
(25)–(28).

Fig. 15. Runtime of the proposed LSDM method and the DPSL method.

TABLE III

PARAMETERS OF THE APF METHOD USED IN THE SIMULATION

C. Compared With the State-of-the-Art Method

1) Distance Calculation: A simulation of drawing cross
circles by using two PA10+ with the mentioned two distance
computation methods is shown in Figs. 15 and 16. Fig. 15
shows the runtime between two methods. From Fig. 16(a),
the minimum distance calculated by the DPSL is similar to
the minimum distance calculated by the LSDM.

a) Calculation error: From Fig. 16, the RMSE between
d2 and the minimum distance calculated by the LSDM
is 0.1130 m. The RMSE between d2 and the minimum distance
of LSDM is 0.1119 m. Furthermore, the RMSE between
the minimum distances calculated by the LSDM and DPSL
methods is 2.5×10−3 m. That is to say, the minimum distances
of these methods are similar and do not interfere with the MCA
scheme.

b) Runtime: Fig. 15 shows the runtime of the mentioned
two methods when applying for drawing cross circles. The
runtime of the LSDM is smaller than the DPSL. The root-
mean-square errors (RMSEs) of the LSDM are 1.16 × 10−4 s
(left) and 1.16 ×10−4 s (right), which are smaller than that of
the DPSL (left: 2.04 × 10−4 s; right: 1.67 × 10−4 s).

2) Mutual-Collision-Avoidance Scheme: All the parameters
used in the simulation when using the APF method are shown
in Table III. The minimum distances calculated by the APF
and MCA methods are shown in Fig. 16. We can see that the
MCA and APF methods can achieve the control task.

The position errors of the APF method with and with-
out considering collision avoidance are shown in Fig. 17.
When the APF method without considering the collision
avoidance (APF-NCA) is applied for drawing two cir-
cles, the position errors of the manipulators are within
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Fig. 16. Minimum distance comparisons. (a) Minimum distances calculated
by the LSDM and DPSL methods. (b) Minimum distances calculated by the
APF-NCA, APF-CA, and MCA methods.

Fig. 17. Position and velocity errors between the APF-NCA and APF-CA.
(a) LSDM and (b) DPSL methods.

[−3 × 10−5, 3 × 10−5]. The accuracy of the manipulators
satisfies the requirement of the control task. However, when
collision avoidance is considered, the accuracy of the manip-
ulators decreases. Furthermore, the accuracy when using the
MCA scheme will not decrease. The above results verify the
analysis presented in Section V.

D. Experiment With Real Robots to Put the Cups in Order

An experiment with real robot manipulators KINOVA
JACO2 and MICO2 is designed to demonstrate the physical
realizability of the MCA scheme (25)–(28). Considering the
structure of the manipulators KINOVA JACO2 and MICO2,
we set d1 as 0.07 m and d2 as 0.12 m for safety. The
parameter n is set as 6, since the DOFs of JACO2 and MICO2

are 6. Other experimental parameters are set the same as the
above simulations. The arm lengths of JACO2 and MICO2 are
90 and 70 cm. The distance between the centers of the base
of two manipulators is 78 cm. The radii of the working areas
of JACO2 and MICO2 on the desk are 69.3 and 46.6 cm.
To make it easy for the reader to understand the working area
of the experiment, an equivalent illustration of the working
area of the manipulators in simulation is shown in Fig. 18.
The red lines denote the left-hand-side JACO2 manipulator
and the blue lines denote the right-hand-side MICO2 manip-
ulator. The inside of the yellow arc is the working area of
JACO2, and the inside of the green arc is the working area
of MICO2. The black dashed block is the target area of the
stacking cups.

Dual manipulators, i.e., a JACO2 and a MICO2, are con-
trolled to finish cooperatively a cup-stacking task. Fig. 19(a)
and (b) shows the minimum distances between the two robots
controlled by the MVN and MCA schemes, respectively. From
Fig. 19(a), the manipulators would collide at 97.32 s without
considering the MCA criterion and the minimum distance

Fig. 18. Illustration of the working areas in the real-world experiment.

Fig. 19. Comparisons of minimum distance between JACO2 and MICO2

synthesized by (a) MVN scheme (25)–(27) and (b) MCA scheme (25)–(28).

Fig. 20. Real-robot experiment of cup stacking synthesized by the MVN
scheme.

decreases to 0.06153 m at 100 s. By contrast, Fig. 19(b)
illustrates the effectiveness of the MCA scheme by keeping
the distance in the safe distance and the global minimum
distance increases to 0.07715 m at 100 s. The snapshots of
the real robot working process are shown in Figs. 20 and 21.
Accordingly, we can find that JACO2 and MICO2 collide with
each other in Fig. 20 (3) and (4) and we stop the manipulators
right away for safety. Obviously, from Fig. 20, we know
that if the MCA criterion is not considered, JACO2 and
MICO2 would then get closer step by step and collide finally.
By contrast, since the MCA scheme is applied in Fig. 21,
JACO2 and MICO2 cooperatively complete well the cup-
stacking task. This comparative real-robot experiment verifies
the effectiveness and safety of the MCA scheme synthesized
by LVI-PDNN when dual redundant manipulators execute the
cooperative tasks.

In summary, the above simulations and one experiment with
real robots validate the physical realizability, effectiveness,
and accuracy of the MCA scheme (25)–(28) for MCA while
completing the end-effector task.
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Fig. 21. Real-robot experiment of cup stacking synthesized by the MCA
scheme.

Fig. 22. (a) Front view, (b) right view, (c) top view, and (d) general view
of the negative example.

E. Negative Example

Since the QP problem (25)–(28) is a convex optimization
problem, there are no other local solutions except the global
optimal solution. However, the solution of (25)–(28) is a
solution satisfying the design rules. This solution will be
within all the feasible solutions to achieve the task if (25)–(28)
is reasonable. For example, if the end-effector task equality
constraint has conflicts with the collision-avoidance inequality
constraint (i.e., there is no intersection region), the solution
of (29) is a least square solution but not exact solution.
It means that the solution of (29) will become a fake attractor
to the motion planning problem and will cause task failure.
The above situation will happen, as shown in Fig. 22.

As shown in Fig. 22, assume that the left-hand-side
manipulator is fixed in the xoz plane and the right-hand-side

Fig. 23. Simulation results of the negative example.

manipulator needs to track the target trajectory in the yoz
plane. As for such a practical problem, the end-effector
equality constraint gives an attraction along v1 and the
collision-avoidance inequality constraint gives another attrac-
tion along v2 [Fig. 22(c)]. This implies that the attractor will be
along the y-axis. By using the proposed scheme, the planning
task will become failure due to the fake attractor caused by the
contradiction between constraints (26) and (28). For example,
Right-1→Right-2→Right-3. The corresponding simulation
results of this negative example are presented in Fig. 23.
Two manipulators crash with each other and the collision
avoidance is failure.

To solve this problem, the attraction along v3 is more
suitable, i.e., Right-1→Right-4→Right-3 presented in Fig. 22.
Thus, the collision-avoidance scheme can be further improved
by using some improved design rule. This will become one of
our future works.

VII. CONCLUSION

To avoid collisions between the dual robot manipulators,
a novel MCA scheme has been proposed and analyzed in
detail in this article. It has been proven by simulation and
real robot experiments that the MCA scheme cannot only
ensure the high tracking accuracy while tracking the desired
paths, but also avoid the collision of the dual manipulators
by keeping the manipulators in a safe distance. To achieve
the desired goal, a new measure strategy of the minimum
distance between the two line segments has been designed
and discussed. In addition, the MCA scheme has been then
formulated as a standard quadratic program, which has been
solved by an RNN in real time. Finally, the simulations and
comparisons based on PA10+ and an experiment with real
robots based on KINOVA JACO2 and MICO2 have verified the
physical realizability, effectiveness, accuracy, and advantage of
the MCA scheme.
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